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Abstract
1. Species population dynamics are driven by spatial and temporal changes in the 

environment, anthropogenic activities and conservation management actions. 
Understanding how populations will change in response to these drivers is funda-
mental to a wide range of ecological applications, but there are few open-source 
software options accessible to researchers and managers that allow them to  
predict these changes in a flexible and transparent way.

2. We introduce an open-source, multi-platform r package, steps, that models spatial 
changes in species populations as a function of drivers of distribution and abun-
dance, such as climate, disturbance, landscape dynamics and species ecological 
and physiological requirements.

3. To illustrate the functionality of steps, we model the population dynamics of the 
greater glider Petauroides volans, an arboreal Australian mammal. We demonstrate 
how steps can be used to simulate population responses of the glider to forest 
dynamics and management with the types of data commonly used in ecological 
analyses.

4. steps expands on the features found in existing software packages, can easily 
incorporate a range of spatial layers (e.g. habitat suitability, vegetation dynamics 
and disturbances), facilitates integrated and transparent analyses within a single 
platform and produces interpretable outputs of changes in species' populations 
through space and time. Further, steps offers both ready-to-use, built-in func-
tionality, as well as the ability for advanced users to define their own modules 
for custom analyses. Thus, we anticipate that steps will be of significant value 
to environment and wildlife managers and researchers from a broad range of 
disciplines.
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1  | INTRODUC TION

The need for spatial and temporal predictions of species' population 
dynamics in response to environmental change and management 
actions has long been recognized (Akcakaya, Radeloff, Mladenoff, 
& He, 2004; Keith et al., 2008; Wintle, Bekessy, Venier, Pearce, & 
Chisholm, 2005), and population models remain central to ecologi-
cal management and research (Thuiller et al., 2013). Researchers and 
conservation managers need to be able to model the cumulative and 
synergistic effects of multiple drivers of population dynamics, includ-
ing the amount, quality and configuration of habitat (e.g. effects of cli-
mate and land-use change), stochastic disturbances and catastrophes 
(e.g. fire) and spatially varying influences on survival and fecundity 
(e.g. disease, physiological constraints, predation).

Two well-established modelling approaches used to answer these 
questions are population viability analysis (PVA) and correlative species 
distribution modelling (SDM). PVA requires knowledge of species' pop-
ulation dynamics and estimates of vital rates, such as survival and fe-
cundity, to simulate population trajectories and quantify the likelihood 
of population persistence over a defined time period (Boyce, 1992). 
Correlative SDM is a statistical modelling approach used to predict 
species occurrence across a landscape using relevant spatial predic-
tors and has been widely used to predict potential impacts of environ-
mental change and management interventions on biodiversity (Guisan 
et al., 2013). Correlative SDM enables users to make spatial and tem-
poral predictions of species occurrence when these are the only data 
available. However, these models do not explicitly account for dynamic 
population processes, such as dispersal, spatial and temporal variation 
in vital rates, and density dependence, and so may not provide reliable 
predictions of species persistence (Fordham et al., 2012).

To address some of these limitations, spatially explicit population 
models (SEPM) have been developed, which combine spatially ex-
plicit data with the population dynamics processes in PVA (Fordham, 
Akçakaya, Araújo, Keith, & Brook, 2013). Typically, SEPM start with 
spatial information on the availability and quality of habitat patches 
through time—often derived from correlative SDM. This habitat 
suitability is combined with information about initial population 
sizes, vital rates and dispersal capacity, to predict future population 

abundances via stochastic simulation (Figure 1; Akçakaya et al., 
2004; Beeton et al., 2015; Keith et al., 2008).

Despite the potential of SEPM approaches to provide spatially 
explicit and temporally explicit predictions of population abun-
dances, they remain relatively rare compared to correlative SDM 
(Briscoe et al., 2019). A key barrier to more widespread use is the 
availability and accessibility of population modelling software. As 
highlighted by Lurgi, Brook, Saltre, and Fordham (2015), common 
shortcomings of currently available population modelling software 
include limited flexibility for customization, lack of transparency and 
reproducibility, restrictions to specific computer operating systems, 
and advanced computational skills required of users. There are 
several software options that are open-source and multi-platform, 
however, these tend to be either highly customisable, but with com-
plex set-up and coding requirements (e.g. spaDES), or more straight-
forward, but with limited modularity and documentation to assist 
with customisation (e.g. demoniche—Nenzén, Swab, Keith, & Araújo, 
2012). Other freely available software with extensive built-in 
functionality may only run on single operating systems and have 
source code that is not available for users to scrutinize or customize  
(e.g. RangeShifter—Bocedi et al., 2014). One of the most recognized 
software packages for SEPM is ramas Metapop (Akcakaya, 1999), 
which has an intuitive interface and is well-supported and tested, 
but has a license fee, only runs on Windows operating systems and 
is not open-source. This prevents users from adding or integrating 
new modules that capture ecological or population processes that 
are not already integrated in the software. These limitations pre-
vent more widespread adoption of comprehensive ecological mod-
els and inhibit synthesis studies that draw generalizations from the 
outcomes of a range of case studies and simulations.

We present steps version 1.0.0, an r package that combines 
functionality from existing spatial population simulation software 
with high transparency, and a modular design that allows for future 
extensions by other researchers. Crucially, our software is open-
source—written in the language of the widely used statistical soft-
ware r (R Core Team, 2019)—and provides a zero-cost option for 
managers, consultants, citizen-scientists and others across many 
different sectors.

F I G U R E  1   steps is run on a grid-based 
architecture, which enables the easy 
integration of spatial products (grids) 
from other modelling software, including 
climate, landscape, physiological and 
disturbance information
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2  | OVERVIE W OF SOF T WARE

While steps can be used to perform non-spatial PVA using informa-
tion on initial population size and a population growth function, its 
key aim is to enable spatio-temporal predictions of species popula-
tions across a landscape. steps uses a regular grid to spatially repre-
sent a landscape and define carrying capacities, initial abundances 
and other miscellaneous spatial information that can be used to de-
fine and modify population or landscape features (e.g. translocations 
or habitat disturbances). Population dynamics within suitable habitat 
cells are then simulated based on an age- or stage-structured transi-
tion matrix, with populations connected via dispersal (Figure 1).

Because steps uses a regular grid to represent populations, it is 
straightforward to integrate different ecological models and types 
of data representing landscapes, habitats and populations (Figure 1). 
Examples include defining habitat patches and/or carrying capacities 
using static or temporally variable spatial outputs from open-source 
software for landscape change (e.g. landis—Mladenoff, 2004) or spe-
cies distribution models (e.g. dismo—Hijmans, Phillips, Leathwick, & 
Elith, 2015); incorporating grids of spatially explicit and temporally ex-
plicit vital rates (e.g. biophysical models such as NicheMapR—Kearney 
& Porter, 2019); and evaluating the relative benefits to species' pop-
ulations arising from spatial prioritizations of conservation actions  
(e.g. protected area designation or conservation management) proposed 
using packages such as Zonation (Moilanen, Kujala, & Leathwick, 2009).

steps has been developed to run through the statistical software 
r on any operating system and can easily operate in enhanced com-
putational environments (i.e. high-performance server clusters). 
steps architecture is modular and object-oriented (Figure 2) to max-
imize flexibility and be computationally efficient (Appendix B).

3  | SOF T WARE FUNC TIONALIT Y

steps includes pre-defined functions to control changes in population 
growth, dispersal, density dependence and modifications to popula-
tions and habitats (Figure 3). We have included three types of dispersal 
function: a computationally efficient diffusion kernel approach using 
a Fast Fourier Transform, a more flexible diffusion kernel approach in 
which dispersal can be constrained by habitat suitability or carrying 
capacity and a cellular automata dispersal simulation that considers 
individual-based movements and accounts for landscape permeabil-
ity. Both competition and ceiling density dependence functions are 
included to modify vital rates (e.g. Keith et al., 2008) and to cap popu-
lation sizes (e.g. Zurell et al., 2012) respectively. Direct changes to pop-
ulations based on management interventions, such as translocations, 
reintroductions, fertility control or culling, can be simulated by calling 
functions to add or subtract cell populations at specified timesteps. 
Several plotting options are available, including the ability to plot spa-
tial changes in populations over time as animations.

F I G U R E  2   Landscape objects and dynamics functions are passed to a simulation. During the simulation, dynamics are applied to 
landscape objects at each time-step/iteration (tn) and stored in a results object (solid arrows). The landscape object is modified and reused at 
each iteration (dashed arrows). Only initial populations and a population growth function (bold boxes) are required to run a simulation—this is 
equivalent to a non-spatial population viability analysis
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Users are not limited to performing simulations using pre-defined 
functions—the software accepts any custom function that can be  
implemented in r and we include a tutorial vignette in the software to 
assist users with creating their own functions. This balance of inter-
nal functions that cover many typical operations used in SEPM, and 
the flexibility to include other operations, offers unlimited potential 
for users to model and test unique scenarios.

4  | E X AMPLE

Here we demonstrate the functionality of our software by speci-
fying a greater glider Petauroides volans SEPM within core habitat 
in South-Eastern Australia. Greater gliders are folivorous, ar-
boreal mammals that rely on old growth forests for shelter and 
foraging. We used steps to simulate population trajectories over 
50 years, accounting for key threats including forest fires. We 
stress that this example application is provided to demonstrate 
how to specify an SEPM using steps, and not to provide realistic 
predictions about the viability of the species under planned or 
proposed management.

Our model landscape is a 250,000 ha grid with a resolution 
of 500 m × 500 m (10,000 total cells). We predicted habitat suit-
ability in each timestep using a correlative species distribution 

model fitted to occurrence data and dynamic climate and veg-
etation layers (Appendix A). We set initial population sizes by 
randomly distributing approximately 4,000 gliders across suit-
able habitats (likelihood of occurrence ≥0.5) in the landscape. 
Initial populations were comprised of three life stages—newborn 
(~29%), juvenile (~14%) and adult (~57%)—roughly based on stable 
age distributions calculated from an initial age-based transition 
matrix (Table 1).

We set up and ran the model using three functions: land-
scape(), population_dynamics(), and simulation(). We first use 

F I G U R E  3   Functionality of steps. Boxes in the ‘dynamics’ and ‘support’ categories indicate named inbuilt functions whilst boxes in the 
‘affected object’ category indicate landscape objects that are modified by functions during a simulation. Colours and coloured arrows 
indicate which functions operate on which objects. Black arrows represent information flow (i.e. objects/parameters supplied to functions). 
Parameters that require spatially explicit inputs (i.e. grids) are marked with asterisks

TA B L E  1   A population transition matrix (Lefkovitch matrix) 
representing post-breeding survival and fecundity values for female 
greater gliders. The first row indicates the expected number of 
newborn female gliders per timestep (1 year), per individual in each 
life stage that produce them, multiplied by their respective survival. 
The second and third rows indicate the expected transition 
probabilities for the three life stages. The juvenile and newborn life 
stages each span a year, so there is no probability of an individual 
remaining in those life stages between timesteps

 Newborn Juvenile Adult

Newborn 0.000 0.425 0.425

Juvenile 0.500 0.000 0.000

Adult 0.000 0.850 0.850
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landscape() to create an initial landscape object. This is composed 
of our initial population raster stack, a habitat suitability raster 
stack obtained from a species distribution model (Appendix A), 
and a carrying capacity object—in this case a user-defined logistic 
k_function that will create a raster of maximum population sizes at 
each timestep based on the corresponding habitat suitability ras-
ter. We also include rasters for ‘fire’, ‘development and ‘predation’, 
which are used by the population and habitat dynamics functions 
to modify population size, carrying capacity and population pa-
rameters, such as survival. A link to the code and data used to create 
our inputs is provided in the ‘Data Availability Statement’ section.

We use population_dynamics() to specify the functions to be exe-
cuted on the landscape object at each timestep. We indicate that the 
population will grow according to a baseline transition matrix (Table 1), 
but with environmental stochasticity in each of the values. The transi-
tion matrices for each cell will be modified at each timestep by density- 
dependent competition between juveniles and adults, and by fires  
(affecting only survival).

We use cellular automata dispersal and specify the maximum 
number of cells (five) across which individuals (juveniles only) move 
in each timestep to approximate a mean dispersal distance of one 

kilometre. We also use a function to set the proportion of individuals 
that disperse based on how close the population of a cell is to its 
carrying capacity. To simulate predation effects from owls, we use 
‘predation’ rasters that define cells where predation reduces the 
population of juveniles by 50%.

Lastly, we use simulation() to run population dynamics simula-
tions across the landscape for the specified number of timesteps 
and replications, and return the results. We provide our landscape 
and population dynamics objects and specify ten replicates of fifty 
timesteps for the simulation.

We illustrate two of the available options for plotting simulation 
results: trajectories of the total population of each life stage across the 
landscape (Figure 4) and spatial grids (Figure 5). For the greater glider, 
both plots indicate a sharp decline, due to a large fire occurring in year 
nine, followed by population stabilization.

By adding functions or changing input data and parameters, we 
can test management scenarios for the greater glider. As fire and 
logging were already incorporated into predicted habitat suitability, 

F I G U R E  4   Population trajectories over 50 years for each life stage. Grey lines represent simulation replicates (ten total) whilst coloured 
lines are mean values
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we tested the effect of clearing approximately 43,000 ha in the land-
scape for urban development to assess population responses. This 
was done by adding a habitat dynamic function that applied yearly 
disturbance layers to the habitat suitability rasters. We provided a 
raster stack representing additive habitat clearing in each year con-
taining zeros (cleared), and ones (no modification), which was multi-
plied by the habitat suitability raster at each timestep.

The simulation resulted in a corresponding change in the popula-
tion trajectories of the species. Whilst the population once remained 
relatively stable after the fire (Figure 6a), it now continued to decrease 
due to habitat modification (Figure 6b).

Simulation results can also be summarized across different man-
agement or environmental change scenarios, or under varying model 
assumptions, using ‘expected minimum abundance’ (EMA) plots 
(McCarthy & Thompson, 2001). EMA is the mean of the minimum 
total population size across all simulations. These plots allow the user 
to assess the sensitivity of predictions to model assumptions, or to 
management or environmental change scenarios. In addition to simu-
lating disturbance, we tested each scenario with two different values 

F I G U R E  5   Spatial representations of 
total population sizes in each 25 ha grid 
cell for years 1, 10, 25 and 50 of a single 
simulation replicate. Grey areas have zero 
population and white areas indicate cells 
with missing values (e.g. water bodies)

F I G U R E  6   Total population trajectory 
over 50 years with (a) no habitat clearing 
for urban development and (b) habitat 
clearing for urban development across 
the landscape. The grey area represents 
variability (95% interval) amongst all 
simulation replicates (ten total) whilst 
the heavy black line represents mean 
values. The dotted line is the mean of the 
minimum population estimates across all 
replicates

F I G U R E  7   Expected minimum 
abundance for different simulated 
scenarios, with and without habitat 
modification, and at both high and low 
levels of environmental stochasticity. The 
black dots represent expected minimum 
abundance across all simulation replicates 
(each shown as a grey dot)
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of environmental stochasticity (expressed as the standard deviation 
on survival and fecundity values)—a low value of 0.005 and a ten-fold 
higher value of 0.05. Figure 7 shows a comparison of all four simulations.

5  | DISCUSSION

We have developed an open-source, flexible and interoperable soft-
ware that will enable widespread and reproducible spatially explicit 
simulations of species population dynamics. steps offers many fea-
tures currently available in commercially licensed or platform-specific  
population simulators—including dispersal, density dependence, 
growth and habitat dynamics—as well as the ability to explicitly incor-
porate threats and management actions that can vary through space 
and time.

The grid-based approach adopted in steps differs from existing 
software such as ramas Metapop, which represent landscapes using 
discrete habitat patches, which may differ in size and shape. This has 
several advantages, for example, switching from small, isolated, de-
fined patches to more continuous landscapes is problematic when at-
tempting to sensibly model dispersal using patch-based approaches. 
Patch-based models also result in a loss of spatial information and, 
given the increasing availability and quality of grid-based data, this 
may reduce model utility and flexibility. However, grid-based model 
performance is dependent on the user selecting a suitable cell size 
for analyses (see below). If motivated, users could simulate patch-
based environments by aggregating cell populations and setting all 
cells between patch-group cells to missing values. This may increase 
computational efficiency since steps internally ignores all missing 
values.

Given that steps uses a regular grid to spatially organize a land-
scape, it is important for the user to carefully consider the size of 
cells. For example, species attributes, such as home range size and 
activity patterns, should influence the choice of grid cell resolution. 
In our example, we chose a grid cell resolution of 500 m × 500 m 
(25 ha). We could have chosen a cell size that is closer to the 1.5 ha 
mean home range of greater gliders, as they tend to forage close to 
shelter; however, this would only allow a maximum of two animals in 
each grid cell. These low carrying capacities make the populations in 
each cell more sensitive to demographic stochasticity (although this 
can be turned off globally), which may not be ecologically realistic in 
some circumstances. Where users are unsure about the appropriate 
grid cell size to use, we recommend considering a cell size that sets 
the maximum carrying capacity to more than a few individuals in 
highly suitable cells. Users may need to experiment by toggling de-
mographic stochasticity on and off to find a workable, and ecologi-
cally reasonable, cell size.

Although we chose to simulate a management action that af-
fected the amount and spatial arrangement of available habitat, it is 
also possible to test impacts on population dynamics by simulating 
processes that alter survival and/or fecundity (e.g. disease, heat-
waves, drought), including how these vary spatially and temporally. 
Our example analysed a species of conservation concern, however, 

the modelling approach could equally be applied to management of 
overabundant or pest species. steps provides a simple starting point, 
but a remarkable amount of flexibility, enabling users to integrate 
models, data and functions to produce robust and transparent pre-
dictions about population change across landscapes.

6  | FUTURE WORK

We intend to develop an online repository for custom steps modules 
and advanced tutorials, allowing users to share custom-written func-
tions (e.g. management interventions or data extracting utilities) for 
use with steps. Most importantly, a publicly accessible repository will 
further support our main motivation for developing the software—
transparency, flexibility and reproducibility.
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