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We develop a game-theoretic model to explore the question of whether two animals should cooperate in
the dangerous activity of obtaining a rich and essential resource. We consider variation in the risks
incurred to individuals and in how the activities of the two animals interact to influence the probability
of success. We also consider that the animals may be relatives and thus share evolutionary interests. The
model is general and can, for instance, be applied to mammalian predators attempting to capture and
subdue large and dangerous prey or to female parasitoid wasps that attack and, if successful, paralyse
aggressive hosts that then provide the only feeding resource for their offspring. This minimal model of
cooperation contains three dimensionless parameters: vulnerability (the ratio between the average time
for a lone attacker to subdue the defending resource and the average time for the defender to fatally
strike the attacker), the dilution ratio (the extent to which attack by animals acting in tandem reduces a
defender's ability to kill its attackers) and the relatedness between the potential attackers. The model
predicts that higher values of all three parameters favour cooperation and that for small values coop-
eration is not evolutionarily stable. Cooperation can arise from an ancestral state of non-cooperation if
values of all parameters are sufficiently high but cannot arise among non-relatives, irrespective of other
parameter values. Once cooperation has emerged in a population, it can be maintained among non-
relatives at modest values of dilution ratio and vulnerability. We discuss these general predictions in
particular relation to the parasitoid genus Sclerodermus, in which multiple females may attack unusually
large and aggressive hosts and in which host attack behaviour is mediated by kinship.
© 2021 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Essential resources for reproduction are sometimes rich, that is, we refer to a potentially fatal resource as a ‘dangerous’ one. It is

they are of such a size that they can be exploited by multiple in-
dividuals with no significant reduction in reproductive benefit for
any of the exploiters. A well-known example is a rare ephemeral
food bonanza, such as a carcass on which juvenile ravens feed
(Heinrich, 1989). Access to a carcass may be both essential to a
juvenile's survival and uncertain, since the resource is often
defended by resident adults, even though the resource is so great
that use of it by one juvenile does not impinge on another's ability
to feed, once access is gained. Nevertheless, attempting to exploit
the resource is not especially dangerous: residents may defend
their bonanza aggressively, but there is no significant risk to a ju-
venile raven of death or even serious injury.

By contrast, if a rich and essential prey or host resource is still
alive, then attempting to exploit it may prove fatal. Henceforward,
erton-Gibbons).
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convenient also to have a single term for a rich, essential and
dangerous resource, and so we will refer to such a resource
henceforward as a ‘bounty’ (which in other usage has two mean-
ings, one of which captures the do-or-die aspect of essential and
dangerous while the other captures abundance). Ungulates pur-
sued by starving carnivores could exemplify such a bounty if suf-
ficiently capable of inflicting fatal injury on their attackers; in this
regard, Mukherjee and Heithaus (2013, p. 554) note the potential
for physical injury or even death when wolves pursue elk and
Packer (1986, p. 440) reports that predatory lions can be killed by
buffalo, one of their largest species of prey. Hosts of some species of
parasitoid wasps could likewise exemplify a bounty; in particular,
for parasitoids in the genus Sclerodermus (Hymenoptera: Bethyli-
dae), beetle larvae hosts essential to reproduction are, when large,
both dangerous and rich (Abdi, Hardy, Jucker, & Lupi, 2020; Abdi,
Lupi, Jucker, & Hardy, 2020). Note that, in theory, an essential
resource is one for which there is no alternative source of fitness,
which in practice means that the resource is very rare.

Even if it is common for a resource to satisfy one or two of the
three criteria for a bounty (that the resource is essential, that it is
evier Ltd. All rights reserved.
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rich, and that it is dangerous), how often a bounty occurs in nature
is largely unknown. It is precisely in such circumstances that
theoretical exploration can prove most useful, by answering basic
questions about the ecological circumstances in which a phenom-
enon is most likely to be observed.

One such question, which we address here, is the following. Faced
with an essential and rich but also dangerous resource (a bounty),
should each of a pair of potential exploiters attack in tandem
immediately, or hold back, remaining in the vicinity in the hope that
the other will take the risk of attacking first?We expect the answer to
depend on the attack capability of an attacker versus the aggressive
defence or counterattack ability of the defender, and on the relative
extents to which operating in tandem reinforces the strike capability
of two attackers and/or weakens the defence capability of the
resource.We also expect the answer to depend on the extent towhich
potential attackers share common evolutionary interests via relat-
edness, because in the field of behavioural evolution, inclusive fitness
is often invoked to understand a range behaviours, including conflict
resolution and cooperation (Davies, Krebs, & West, 2012; Hamilton,
1964). We explore the importance of all three factors in our analysis.

A standard game-theoretic framework for the study of cooper-
ation is a ‘cooperator's dilemma’ whose payoffs incorporate rele-
vant temporal aspects of the phenomenon at issue (Mesterton-
Gibbons & Dugatkin, 1992). This framework has been used, for
example, by Packer and Ruttan (1988) to predict the evolution of
cooperative hunting in pairs, by Mesterton-Gibbons (1991) to
analyse cooperative exploitation of oviposition sites by insects and
by Mesterton-Gibbons and Dugatkin (1999) to study the evolution
of delayed recruitment to food bonanzas via mutualistic informa-
tion sharing at communal roosts in ravens. These models do not
apply to a bounty, because they do not allow for the possibility that
a resource may be dangerous to exploit (and in the second case the
resource is not even rich). Nevertheless, the underlying framework
is flexible, and here we utilize it to construct a new model for
exploring factors that favour cooperative exploitation of a bounty.
We begin by considering a single individual attempting to exploit a
bounty, then consider the problem as a game between two unre-
lated individuals. Later we consider the influence of kinship be-
tween potential attackers. Details of the analyses including
consideration of kinship are presented in two appendices. The
model we develop is potentially applicable to many animal taxa.

In the case of Sclerodermus attacking beetle larvae, which we
consider in the Discussion, the standard terms for the potential
exploiters and resource in question would be parasitoid and host;
whereas in the case of carnivores attacking ungulates, the standard
terms would be predators and prey. We use the terms predator and
prey in developing our model, not to suggest that potential
mammalian examples of a bounty are either more common or more
important than invertebrate examples, but because predators can be
understood to include parasitoids and prey can be understood to
include hosts, andwewish to emphasize the breadth of applicability
of ourmodel. Likewise, an act of aggressionwould typically be called
a sting, bite or kick, according towhether the actor is an invertebrate
attacker, an invertebrate defender or a mammalian attacker, or a
mammalian defender; however, we will instead use the word strike
to cover all such cases using just one term.

THE GAME AMONG UNRELATED INDIVIDUALS

One Attacker, One Defender

We consider a predator attacking a potential prey that may
defend itself and is thus dangerous. For example, a parasitoid may
attempt to suppress a potential host by stinging it with paralysing
venom and the host may attempt to kill the parasitoid by biting it
into pieces; Abdi, Hardy et al. (2020) and Abdi, Lupi et al. (2020)
document empirical examples. Similarly, both zebras and buffalo
may be dangerous to hunting lions (Scheel & Packer, 1991), and
snakes may be dangerous to predatory birds (Bowman, 2003; Frye
& Gerhardt, 2001).

Let random variable S denote the time that elapses until the
attacker is able to deliver a strike that is fatal or at least inactivating;
for example, a parasitoid may deliver a paralysing sting, or a
predator may wound its prey nonfatally, but such that its defence
capabilities are greatly diminished (Mukherjee& Heithaus, 2013, p.
555). We assume that S is exponentially distributed withmean t, so
that the attacker is delivering disabling strikes at a rate of 1/t per
unit time. Note that the predator may be attacking the prey at a
much higher rate than 1/t because the prey may frequently shake
its attacker off, and only disabling strikes concern us here. Thus,
Prob(S > t) ¼ e�t/t , and the density function for the distribution is g,
where

gðtÞ¼1
t
e�t=t (1)

for all t > 0. Correspondingly, let random variable B denote the time
that elapses until the defender is able to deliver a fatal blow. We
again assume that B is exponentially distributed, but with mean T,
so that the defender is delivering fatal strikes at a rate of 1/T per
unit time. Thus Prob(B > t) ¼ e�t/T and the density function for the
distribution is h, where

hðtÞ¼ 1
T
e�t=T : (2)

The attack has one of two outcomes: either the attacker disables
the defender before it can deliver a fatal strike, or the defender kills
the attacker before it is disabled. In the first case the attacker has
fitness 1, in the second case its fitness is zero. The probability of
reproduction is thus

pR ¼ProbðS < BÞ¼∬ 0< x<h<∞gðxÞhðhÞdxdh¼ T
tþ T

¼ 1
qþ 1

(3)

where

q¼ t
T

(4)

is the ratio between means of the two distributions. We note that
the property of yielding fitness 1 with access to the resource and
fitness 0without access to the resource is the de facto definition of a
rich and essential resource (when fitness is scaled with respect to
its maximum value).

The larger the value of q, the longer on average it takes a
predator to disable a prey, compared to how long it takes on
average for the prey to deliver a lethal strike. Thus, the higher the
value of q, the more vulnerable is a predator to being killed before it
can subdue the prey and gain resources for ultimate reproduction:
we refer to q as the vulnerability. Our analysis will be valid for any
q > 0.

For Sclerodermus, it has been shown that vulnerability is greater
when hosts are larger (Abdi, Hardy et al., 2020; Abdi, Lupi et al.,
2020), and so for this species we can use host size as a proxy for
vulnerability. Nevertheless, we should not assume that vulnera-
bility increases with prey size for other taxa, because at least among
mammals there is evidence that small prey can be dangerous
(Kerley, 2018).
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Two Attackers (and One Defender)

We now suppose that two predators are present and either or
both may attack the prey. If the attackers neither reinforce nor
interfere with one another in the attack process, then the rate at
which disabling strikes are delivered doubles from 1/t to 2/t,
reducing the mean time elapsing before a first disabling strike to t/
2. There is likely, however, to be at least some reinforcement, the
magnitude of which depends upon the strength of the confusion or
dilution effect caused by the prey now having more than one active
attacker (as observed in Florida scrub-jays, Aphelocoma coeru-
lescens, attacking a snake; Bowman, 2003), so that the new rate of
delivery exceeds 2/t; although this effect is more commonly
invoked in the context of additional prey confusing a predator
(Lehtonen & Jaatinen, 2016) than in that of additional predators
confusing a prey, the logic is the same. However, our analysis also
allows for the possibility that the attackers interfere with one
another (Packer & Ruttan, 1988), so that the new rate of delivery is
intermediate between 1/t and 2/t. Suppose that the new rate is 2q/
t, where q > 1 for reinforcement and 1/2 < q < 1 for interference;
q ¼ 1 implies neither reinforcement nor interference, so that the
effect of a second attacker is purely additive. We refer to the
parameter q as the synergicity. This terminology is consistent with
the use of the term by Mesterton-Gibbons and Sherratt (2007),
with synergy for q > 1 and antergy for q < 1.

Now Prob(S > t) ¼ e�2qt/t, the mean of the distribution for S
becomes t/2q and the density function becomes gD, where

gDðtÞ¼
2q
t
e�2qt=t (5)

for all t > 0 and D denotes that the predators attack as a duo. The
greater the value of the synergicity q, the greater is the extent to
which two predators reinforce one another in attacking the prey.

Correspondingly, the rate at which prey deliver fatal strikes
changes from 1/T to a/T per unit time, so that the mean time until a
fatal strike is delivered changes from T to T/a. It seems likely that
a < 1: it may bemore difficult to deliver a fatal strike to one of a pair
than to a lone individual because the effect of having multiple at-
tackers reduces the defender's ability to manoeuvre effectively,
with the effect being stronger when a is smaller. Nevertheless, our
analysis allows for the possibility that a second attacker has no
effect on the average time to a fatal strike (a ¼ 1) or even reduces it
(a > 1), if, for instance, the prey now has twice as many targets and
doesn't get confused by multiple attackers. We refer to a as the
manoeuvrability.

Because a stronger effect of dilution can manifest itself either as
a higher value of q or as a lower value of a, or both, we use
\eqalign{

d¼ q
a

(6)

to measure the overall strength of the dilution effect; we refer to
the ratio d as the dilution ratio. From the discussion above, our
expectation is that a < 1 < q and hence d > 1; however, our analysis
allows for d � 1 as well. Because now Prob(B > t) ¼ e�at/T, the
density function for the distribution of B becomes hD where

hDðtÞ¼
a
T
e�at=T (7)

so that the probability that one of the attackers delivers a disabling strike
to the prey before it can deliver a fatal strike to either attacker is
pD ¼ProbðS < BÞ¼∬ 0< x<h<∞gDðxÞhDðhÞdxdh¼ 2qT
2qT þ at

¼ 2d
2dþ q

(8)

by equations (4) and (6).
Attacker Strategies

Suppose that the predators are in a game consisting of each
deciding whether and when to attack the prey. Each predator has
two possible strategies. To cooperate means to start attacking the
prey immediately, thus sharing the risk of being killed when the
other individual also cooperates, but also to take all of the risk if the
other individual does not attack. To defect means to wait for the
other individual to be the first attacker. Defectors thus engage with
the prey only if necessary, that is, when the other animal has been
killed by the prey (if the focal individual is defecting against a
cooperator) or when losing the war of attrition that ensues after
defecting against a defector (see below). We term defection strat-
egy 1 and cooperation strategy 2.

The payoff to a cooperator against a defector is 1 if it succeeds in
disabling the prey before it gets killed, and otherwise 0. That is, the
payoff to a cooperator against a defector is a21 ¼ pR � 1 þ (1 � pR)
� 0 ¼ pR, where pR is defined by equation (3). The payoff to a
defector against a cooperator is 1 if the cooperator disables the prey
before it gets killed, or if the cooperator is killed but the defector
subsequently disables the prey, and otherwise 0. That is, the payoff
to a defector against a cooperator is

a12¼pR�1þð1�pRÞ�fpR�1þð1�pRÞ�0g¼pRð2�pRÞ¼
1þ2q

ð1þqÞ2
(9)

by equation (3).
If neither individual is willing ever to attack, then neither gains

any resources for survival or reproduction. So, if neither animal is
willing to be the first attacker in the first instance, then there will
follow a war of attrition, with each defector hoping that the other
individual will commence an attack. We assume that the two in-
dividuals are equally likely to attack first. It follows that the average
of the two payoffs we have calculated, namely,

a11 ¼
1
2
�pR þ

1
2
� 1þ 2q

ð1þ qÞ2
¼ 2þ 3q

2ð1þ qÞ2
(10)

is the payoff to a defector against a defector.
We note that our defector is more of a reluctant attacker: a ‘true’

defector would simply not attack e even after the death of its
cooperator. The payoff to such a defector against a cooperator
would clearly be pR, which is always lower than the payoff in
equation (9); and the payoff to such a defector against another
defector would be zero, which is lower than the payoff in equation
(10). So the strategy of defection in our chosen sense would always
dominate a strategy of true defection.

If the individuals cooperate, then the three pertinent events that
must happen at different times during the interval (0, ∞) are the
death of the focal individual, the death of the nonfocal individual
and the suppression of the prey (and the eventual cause of death at
some later time during (0, ∞) for a predator that outlives the prey
need not be specified, since it has no effect on our analysis). Let us
denote these events by F, N and H, respectively. The six possible
underlying temporal sequences of relevant events are as shown in
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Table 1, where qF is the probability that the prey kills the focal
predator while the nonfocal predator survives at least until a later
time, and qN is the probability that the prey kills the nonfocal
predator while the focal predator survives at least until a later time,
so that 1 � qF � qN is the probability that both predators survive at
least until a later time and therefore reproduce. By symmetry,
qN ¼ qF; moreover, 1 � qF � qN is the probability that the death of
the prey precedes the death of either predator, that is,
1 � qF � qN ¼ pD, where pD is defined by equation (8). Thus
qN ¼ qF ¼ 1/2 (1 � pD), and adding the terms in the final column of
Table 1 shows that the fitness to a cooperator against a cooperator
is

a22¼qN�pRþ1�qF�qN¼pDþ
1
2
ð1�pDÞpR¼

1
2dþq

n
2dþ q

2ð1þqÞ
o

(11)

by equations (3), (4), (6) and (8). It follows that the payoff matrix A
for the game is
4
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2

1

0

0 1 2 3 4

Vulnerability (�)

D
il

u
ti

on
 r

at
io

 (
�)

D alone

� = 0.8

� = 0.6

� = 0.4

� = 0.3

� = 0.2

Both C
and D
where C denotes cooperate, D denotes defect and a22 is defined by
equation (11). Note that

a12 > a11 > a21 (13)

for all q. Also d > 1/2 implies a22 > a11 ¼ a12 þ a21, and so
a22 >max(2a11, a21 þ a12)/2, confirming that the game is a co-
operator's dilemma (Mesterton-Gibbons, 2019, p. 175).

Because a21 < a11, it is always better to defect against a defector
than to cooperate. So D is a best reply to itself and therefore also an
evolutionarily stable strategy (ESS). But whether it is better to
cooperate or defect against a cooperator depends on the sign of

a22 � a12 ¼
qðf4d� 3gq� 1Þ
2ð1þ qÞ2ð2dþ qÞ

(14)

This expression must be negative if d � 3/4, that is, if the pred-
ators interfere with one another sufficiently strongly and/or the
presence of a pair of attackers makes it easier for the prey to deliver
a fatal strike to one of them. Nevertheless, as noted above, our
expectation is that

d>1; (15)
Table 1
Possible event sequences

First
event

Probability Second
event

Conditional
probability

Third
event

Fitness to
protagonist

Fitness �
Probability

F qF N 1 � pR H 0 0
H pR N 0 0

N qN F 1 � pR H 0 0
H pR F 1 qN � pR

H 1� qF � qN F 1/2 N 1 1 � qF � qN
N 1/2 F 1

The relevant events are F, N and H, where F denotes the death of the focal individual,
N denotes the death of the nonfocal individual and H denotes the suppression of the
prey. So the six possible event sequences are FNH, FHN, NFH, NHF, HFN and HNF.
implying 4d � 3 > 0. Then equation (14) is negative and D is
therefore a dominant strategy whenever the point (q, d) lies below
the curve

d¼1þ 3q
4q

(16)

in the qed plane, that is, in the shaded region of Fig. 1: D is the sole
ESS, and there is no cooperation. Needless to say, D is also the sole
ESS in the unlikely scenario of strong predator interference (d � 3/
4), but we assume henceforward that equation (15) holds.

If (q, d) lies above the curve defined by equation (16), however,
then equation (14) is positive, and so it is better to cooperate with a
cooperator than to defect against it. That is, C is a best reply to itself
and therefore also an ESS. A unique ESS no longer exists. Because
a22 > a12 > a11 > a21 by equation (13), the game becomes a special
case of the discrete population game for which the population
evolves to Cwhenever the initial proportion of cooperators exceeds

g¼ a11 � a21
a22 � a12 þ a11 � a21

¼ 2dþ q
ð2d� 1Þð1þ 2qÞ (17)

and otherwise evolves to D (Mesterton-Gibbons, 2019, p. 91).
Straightforward differentiation shows that g is a decreasing func-
tion of both q and d. Therefore, the higher the vulnerability or the
stronger the dilution effect, the smaller the initial proportion of
cooperators needed for the population to evolve to C, as illustrated
by the contour map in Fig. 1 and the dashed curves in Fig. 2.
Nevertheless, it is clear from Fig. 1 that this proportion becomes
Figure 1. Dependence of the ESS among unrelated individuals on the model's two
dimensionless parameters: vulnerability q (the ratio between the average time for a
lone predator to deliver a disabling strike to a prey and the average time for the prey to
deliver a fatal strike to the predator) and dilution ratio d (in essence, the overall extent
to which a prey's confusion by multiple attackers both reinforces predators' ability to
deliver a disabling strike when acting in tandem and reduces the prey's ability to
deliver fatal strikes). The shaded region of the qed plane is where only defect, D, is an
ESS; the unshaded region is where C and D are both ESSes. As q /∞, the boundary
between regions asymptotes towards d ¼ 3/4, as indicated by the dotted line. The
boundary curve is the contour g ¼ 1 of the proportion defined by equation (17),
namely, the critical value that the initial proportion of cooperators must exceed for
cooperation to go to fixation. Other contours are shown dashed. Each contour value
indicates the initial proportion at which (q, d) values above the contour would
correspond to fixation of C. Thus, for example, an initial C frequency of 20% would
suffice for fixation only if q and d were both almost 4, whereas an initial frequency of
over 40% would be required if q and d were both 2.
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small only at very high values of both q and d. It is therefore
effectively impossible for cooperation between unrelated in-
dividuals to emerge; however, having emerged, it could sustain
itself at much lower values of q and d, specifically, anywhere in the
unshaded region of Fig. 1.
THE GAME AMONG KIN

We now explore the effect of kinship between potential at-
tackers. For this purpose, it is convenient to recast the discrete
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Figure 2. Minimum proportion of initial cooperators at relatedness r ¼ 0 (dashed)
versus relatedness (a) r ¼ 0.1 and (b) r ¼ 0.2 (both solid) for three different dilution
ratios. Note that, with the exception of the lowermost curve in (b), curves are plotted
for values of q between qc and 4, and g / 1 as q / qc from above, because qc defined
by equation (22) is the value of q at which a line at height r crosses the boundary
between the unshaded and lighter shaded regions of Fig. 3, and so D becomes the sole
ESS; for r ¼ 0 (dashed curves), qc ¼ q1c , where q1c is defined by equation (23). The
lowermost solid curve in (b) is plotted for values of q between 0 and 4, because in this
case r > rc z 0.167; also in this case, g / 0 as q / 19/6 z 3.167 from below, because
that is the value of q for which the dashed line at height 0.2 in the final panel of Fig. 3
intersects the boundary of the darker shaded region, so that C becomes the sole ESS.
population game developed in the previous section as a continuous
game among kin. Accordingly, let r be the relatedness, that is, the
probability that a strategy encounters itself by virtue of kinship;
then 1 � r is the probability that the strategy encounters an
opponent at random. We assume that 0 < r < 1. Note that the
opponent may still have the same strategy.

We now apply the formalism developed in Mesterton-Gibbons
(2019, p. 224). Let the focal individual's strategy u be defined as
the probability of defection, so that 1 � u is that of cooperation,
with C corresponding to u ¼ 0 and D to u ¼ 1. Let v and 1 � v be the
corresponding probabilities for the nonfocal individual represent-
ing the population. Then, in the absence of kinship, the reward to a
u-strategist in a population of v-strategists is

f ðu; vÞ¼ ðu;1�uÞAðv;1� vÞT (18)

where A is defined by equation (12). An ESS of the game among kin
with relatedness r is equivalent to an ordinary ESS of the gamewith
reward function f, where the kin-modified reward of the original
game with matrix A is defined by

fðu; vÞ¼ ð1� rÞf ðu; vÞ þ rf ðu;uÞ (19)

(Mesterton-Gibbons, 2019, p. 225). It is shown in Appendix 1 that
there cannot be an ESS in the interior of [0, 1]: any ESS of the game
among kin must be a boundary ESS. It is further shown in Appendix
1 that defection fails to remain an ESS of the game among kin above
the curve with equation

r¼ 2dþ q
ð4d� 1Þð1þ qÞ (20)

in the qer plane. In Fig. 3, this curve descends from the point (0, r2)
and asymptotes towards the line r ¼ r1 as q/∞, where

r1 ¼
1

4d� 1
; r2 ¼ 2d

4d� 1
(21)

Thus D fails to remain an ESS in the darker shaded regions of Fig. 3
(but is still an ESS below the bounding curve).

Correspondingly, it is shown in Appendix 1 that cooperation is
an ESS of the game among kin above the curvewith equation q ¼ qc
where we define

qc ¼ 1� 2dr
4d� 3þ r

(22)

(but C fails to be an ESS below the curve). It is convenient to define
three critical values as follows:

rc ¼ 1
2d

; q1c ¼ 1
4d� 3

; q2c ¼ 2d� 1: (23)

Then in Fig. 3 the curve with equation q¼ qc joins (0, rc) to ðq1c ; 0Þ.
Thus, in Fig. 3, C fails to be an ESS in a lighter shaded region. In an

unshaded region, both C and D are ESSes. Note that equation (A4)
must be positive, and hence C must be an ESS, whenever r > rc
(for any value of q) or q > q1c (for any value of r). Moreover, the line
r ¼ rc intersects the lower boundary of a darker shaded region at
(q2c , rc). So C is guaranteed to be the sole ESS among kin if both r > rc
and q > q2c , as illustrated by the dotted lines in the middle panel of
Fig. 3. Nevertheless, for r > rc, Cwill become the sole ESS at a lower
value of q than q2c , specifically, the value of q at which a horizontal
line of height r intersects the boundary, as illustrated with
qz 3.167 by the dotted lines in the final panel of Fig. 3 for r ¼ 0.2
and d ¼ 3. This value of q is the one for which the lowermost solid
curve in Fig. 2b becomes horizontal.
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Figure 3. Dependence of the ESS among kin on the model's three dimensionless parameters: relatedness r, vulnerability q (the ratio between the average time for a lone predator to
deliver a disabling strike to a prey and the average time for the prey to deliver a fatal strike to the predator) and dilution ratio d (the extent to which multiple attack disfavours prey).
For three different values of d, the lighter shaded region of the qer plane is where only D is an ESS; the darker shaded region is where only C is an ESS; and the unshaded region is
where C and D are both ESSes. The significance of the dashed curve through the lighter shaded region is explained in Appendix 2. The significance of the dotted lines is explained in
the first new paragraph after equation (23).

M. Mesterton-Gibbons, I. C. W. Hardy / Animal Behaviour 176 (2021) 57e6562
When both C and D are ESSes, the critical initial proportion of
cooperators above which the population will evolve to C can be
found by using the payoff matrix B for the associated discrete
population name among kin, namely,
and replacing A by B in equation (17), yielding

g¼ b11 � b21
b22 � b12 þ b11 � b21

¼2dþ q� ð4d� 1Þð1þ qÞr
ð1� rÞð2d� 1Þð1þ 2qÞ (25)

Note that g is a decreasing function of all three parameters (q, d and
r) and agrees with equation (17) in the limit as r/ 0 (Fig. 2).

DISCUSSION

We have developed a game-theoretic model to explore the
question of whether two individuals are favoured to cooperate in
exploiting a bountye a rich but dangerous resource that is essential
for reproduction. Our model is a minimal model of cooperation in
the sense of Mesterton-Gibbons and Sherratt (2011). It reduces is-
sues to their fundamentals by reducing description of the relevant
interaction to a dependence on only three dimensionless parame-
ters: relatedness r; vulnerability q (the ratio between the average
time for a lone predator to deliver a disabling strike to a prey and
the average time for the prey to deliver a fatal strike to the pred-
ator); and dilution ratio d (the extent to which attack by more than
one predator disfavours the prey).

The model shows that higher values of all three parameters
favour cooperation by reducing the critical initial proportion of
cooperators above which cooperation will sustain itself and go to
fixation; whereas, for sufficiently small values of these three pa-
rameters, cooperation is not even evolutionarily stable. Our main
result is that no matter how high the dilution ratio and vulnera-
bility, cooperation cannot emerge among nonrelatives from an
ancestral state of noncooperation; however, it can emerge if the
dilution ratio, vulnerability and relatedness are all sufficiently high.
Furthermore, once cooperation has emerged, it can be maintained
among nonrelatives at modest values of dilution ratio and vulner-
ability that do not seem unlikely to be found in nature (specifically,
any values of q and d corresponding to the unshaded region of
Fig. 1). In particular, once established, cooperation sustains itself
among unrelated individuals whenever both q and d exceed 1. This
requires only that on average a predator can deliver a disabling
strike sooner than a prey can deliver a fatal strike, and that a prey is
at least marginally more confused by a pair of predators than it
would be by a sole attacker.

Although our model constitutes the first instance of using a
cooperator's dilemma to investigate cooperative exploitation of a
bounty, this framework has been used by Packer and Ruttan (1988,
p. 165) to investigate the evolution of cooperative hunting in pairs.
In their model, Packer and Ruttan (1988) do not consider the pos-
sibility that the prey can fatally wound a predator, and are con-
cerned with aspects of encounter and pursuit, whereas in our
model engagement is assumed. Although there are points of con-
tact between our model and theirs, they are essentially different. To
make the most direct comparison between the models, we need to
set E1 ¼ E2 ¼ 0 (no pursuit cost, whether solitary or in tandem) in
the model of Packer and Ruttan (1988), so that their prey encounter
parameter L2 scales out (equivalent to setting L2 ¼ 1). It is assumed
that hunting success depends on predator-related factors, and in
particular that H2 ¼ H1(2 � H1), where Hi is the probability of
capturing prey in a group of i individuals, assumed to be inde-
pendent for each individual (Packer & Ruttan, 1988, p. 162). Then
‘cheater’ (equivalent to ‘defect’) is always an ESS, and ‘cooperate’ is
also an ESS if (1 � H1)V > 2(2 � H1)C2, requiring in particular that
V > 4C2, where V is the value of the prey and C2 the cost of coop-
eration to each animal. However, although species-specific esti-
mates of H1 can be obtained from field studies, fitness costs and
benefits like C2 and V are not directly measurable; and Packer and
Ruttan (1988) do not address how V and C2 might depend on
measurable ecological parameters, whereas our model does.
Furthermore, although Packer and Ruttan (1988, p. 185) noted that
kinship can promote cooperation, their treatment was much less
explicit than that provided by our model.

As noted in the Introduction, how often a bounty occurs in na-
ture is largely unknown, but there are potential examples of
bounties scattered across the literature. We regard a resource as a
potential bounty if it satisfies one or more of the three criteria for a
bounty (that the resource is essential, that it is rich, and that it is
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dangerous) and the other criteria are not clearly contradicted.
Among vertebrates, facultatively cooperative mammalian preda-
tors versus large (rich) and dangerous prey scenarios include
wolves hunting elk and lions hunting buffalo or zebra (Mukherjee
& Heithaus, 2013; Packer, 1986; Scheel & Packer, 1991), but such
predators also have alternative, smaller, prey species, diminishing
the fit to the criterion of ‘essential’. Similarly, in avian species, in-
dividuals may cooperate in their attacks on relatively large prey,
some of which may be dangerous but perhaps not essential
(Bowman, 2003; Frye & Gerhardt, 2001) while others may be
essential but perhaps not especially dangerous (Bednarz, 1988).
One example of an avian species that can hunt in cooperative pairs
and has prey that fit all three criteria of a bounty may be African
crowned eagles, Stephanoaetus coronatus (Swatridge, Monadjem, &
Hardy, 2009): these have geographically varying diet ranges
(Swatridge, Monadjem, Steyn, Batchelor, & Hardy, 2014) and in
some areas may depend on feeding on prey species that are both
large and dangerous to attack (Ellis, Bednarz, Smith, & Flemming,
1993).

Among invertebrates there are similar examples of prey being
rich and dangerous to predators, such as spiders attacking large
ants, which sometimes kill the spider, and inwhich the spiders may
exhibit behaviours related to cooperation (Pek�ar, Hru�skov�a, &
Lubin, 2005); given that some spider species hunt only ants
(Líznarov�a & Pek�ar, 2013), it is likely that their prey can also be
regarded as essential. For parasitoids, hosts are, by definition, an
essential resource for offspring production and there are numerous
examples of hosts being dangerous to attack due to their behav-
ioural aggression or chemical defences, and also evidence that both
danger and richness typically increase with host size (Godfray,
1994; Greeney, Dyer, & Smilanich, 2012; Gross, 1993). Although
parasitoids do not typically exhibit simultaneous, potentially
cooperative, host attack, a notable exception occurs in the genus
Sclerodermus, as we discuss below.

As implied above, all three of our model's ecological parameters
(q, d and r) are measurable. Measuring relatedness, r, may be
regarded as a fairly standard procedure (e.g. Charmentier, Garant,&
Kruuk, 2014; Davies et al., 2012). Estimates of the dilution ratio, d,
can be obtained from separate estimates of the manoeuvrability, a,
and the synergicity, q. The vulnerability, q, can be estimated as
described below and by Abdi, Hardy et al. (2020) for interactions
between females of the parasitoid species Sclerodermus brevicornis
(Kieffer) (Hymenoptera: Bethylidae) and its host, the yellow long-
horned beetle Psacothea hilaris hilaris (Pascoe) (Coleoptera:
Cerambycidae). The relevant values appear in their Table 3. Among
34 interactions in which either the parasitoid died before the host
was paralysed or the host was paralysed before the parasitoid was
killed (but not both), there were 12 instances of the first outcome
and 20 of the second. It thus seems reasonable to estimate the
overall probability (ignoring effects of host size variation) that the
parasitoid fatally stings the host before the host can deliver a fatal
bite as 12/20 ¼ 0.625. Of the 12 interactions in which the host was
not paralysed, there were four cases in which the parasitoid died
intact and eight in which it was bisected. Of the 20 interactions in
which the host was paralysed before it could kill its attacker, there
were only 13 cases in which the host was oviposited on. It could be
argued that the eight cases involving bisection of the parasitoid and
the 13 cases involving oviposition are more representative of the
attack interactions described by our model. If only these 21 in-
stances are included, then we instead estimate the probability of
the parasitoid fatally stinging the host before the host can kill its
attacker as 13/21z 0.619.

By substituting either of these two estimates into equation (3),
we infer that 0.6 is a reasonable estimate of q for aggressive in-
teractions between these two particular species. Although q < 1, the
point (q, d) will lie inside the unshaded region of Fig. 1 as long as
d > 1.17, by equation (16). While it remains unnecessary for d to
greatly exceed 1, synergy between Sclerodermus attackers will
likely play a positive role in selecting for multifemale ‘quasisocial’
reproduction on individual hosts, especially if females are not kin
(Tang et al., 2014).

While it may be possible for quasisociality to evolve in Scle-
rodermus due to direct fitness benefits of multifemale host attack
accruing to individuals within groups exploiting a host (Tang et al.,
2014), relatedness between females is likely to play a role. Abdi,
Hardy et al. (2020); Abdi, Lupi et al. (2020) used empirical esti-
mates of the risks involved in host attack and the reproductive
benefits of success to explore, using the pre-existing framework of
Hamilton's rule (which considers the interplay between costs,
benefits and relatedness, Hamilton, 1964), circumstances in which
Sclerodermus females should be selected to attack and then, if
successful, share a host with others as a public good. In all
parasitoidehost associations considered, the risk of the parasitoids
dying increased monotonically with host size while benefits
increased monotonically in some but had a domed relationship
with host size in others. It was predicted in all cases that public
goods attack will be favoured by high relatedness (in most cases >
0.5) but also that when hosts are large and very dangerous, females
would only be expected to attack and share hosts when benefits
were also large (the epitome of a bounty).

There are some key differences between the formulation of our
model and the parameters considered by Abdi, Hardy et al. (2020);
Abdi, Lupi et al. (2020). First, Abdi et al.’s heuristic treatment
focused on whether individual females in a group of potential at-
tackers should be prepared to attack a host alone: possible syner-
gistic effects of multiple-female attack (the dilution ratio) were
thus not considered, and these are clearly likely to reduce risk and
thus favour the decision to attack, as predicted by our game-
theoretic analysis. This potentially reduces, but is unlikely to
entirely eclipse, the importance of kinship suggested by Abdi,
Hardy et al.’s (2020); Abdi, Lupi et al.’s (2020) use of Hamilton's
rule. While it has been found that larger groups of Sclerodermus
females suppress hosts more rapidly (Abdi, Lupi et al., 2020; Tang
et al., 2014), compatible with a dilution effect disfavouring the
host or with the net result of functionally independent attacks, this
effect can operate alongside an effect of female relatedness (Abdi,
Lupi et al., 2020).

Second, we assume that the host resource is invariantly rich and
its richness is uncorrelated with parasitoid vulnerability, while
Abdi, Hardy et al. (2020); Abdi, Lupi et al. (2020) included host size
dependency of both the benefit of success (z richness) and the cost
of attack (z vulnerability).

The assumptions of the two approaches best coincide when, in
our model, vulnerability is high with no dilution effect and, in Abdi
et al.’s approach, benefits increasemonotonically with host size and
hosts are large and at their most dangerous (Liu, Xu, Li, & Sun,
2011). Both approaches conclude that unrelated females should
generally not attack the host and also that higher relatedness can
favour attack. Abdi, Hardy et al. (2020) additionally found empiri-
cally that small and medium-sized hosts were attacked earlier
when pairs of Sclerodermus females were more closely related,
again indicating a role of kinship in promoting the cooperative
exploitation of bounties, as predicted by our model.

Conclusion

In a review of how foragers manage risks, Mukherjee and
Heithaus (2013, p. 550) concluded that ‘understanding the preva-
lence and consequences of hunting dangerous prey should be a
priority for behavioural ecologists’. We have taken a step towards
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addressing this priority. Our game-theoretic model predicts that,
when faced with a dangerous but potentially high-payoff challenge,
pairs of individuals will be more likely to cooperate when the risk
they each would take when acting alone is higher and when acting
in tandem most reduces that risk. Kinship among individuals also
increases the likelihood of cooperation and, given the parameters
explored, is essential for it to be selectively favoured within pop-
ulations of noncooperators.
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Appendix 1. EES Analysis

Because equation (15) implies that

v2f

vu2
¼ð2d� 1Þð1þ 2qÞqr

ð1þ qÞ2ð2dþ qÞ
(A1)

is always positive for r > 0, there cannot be an ESS in the interior of
[0, 1]: any ESS of the game among kin must be a boundary ESS. The
condition for defection (v ¼ 1) to be an ESS of this game becomes
vf/vuju¼v¼1 > 0 (so that somewhat smaller probabilities of defec-
tion cannot invade) with f(1, 1) � f(0, 1) > 0 (so that C cannot
invade); and because

vf

vu

����
u¼v¼1

¼ ð1� rÞq
2ð1þ qÞ2

(A2)

is always positive, defection remains an ESS for r > 0 whenever

fð1;1Þ�fð0;1Þ¼ f2dþ q� ð4d� 1Þð1þ qÞrgq
2ð1þ qÞ2ð2dþ qÞ

(A3)

is positive, that is, below the curve in the qer plane with equation
(20); above this curve, D fails to remain an ESS.

Correspondingly, the condition for cooperation (v ¼ 0) to be an
ESS of the game becomes vf/vuju¼v¼0 < 0 (so that small positive
probabilities of defection cannot invade) with f(0, 0) � f(1, 0) >
0 (so that D cannot invade); and because
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fð0;0Þ�fð1;0Þ¼ ðf4d� 3þ rgqþ 2dr � 1Þq
2ð1þ qÞ2ð2dþ qÞ

(A4)

with

vf

vu

����
u¼v¼0

¼ �
�
fð0;0Þ�fð1;0Þþ ð2d� 1Þqð1þ 2qÞr

2ð1þ qÞ2ð2dþ qÞ

�
; (A5)

(15) implies that cooperation is an ESS whenever equation (A4) is
positive.

Appendix 2. Effect of Kinship: the Inclusive-fitness Approach

In the main body of this paper, the effect of kinship is incorpo-
rated using the ‘personal-fitness’ approach to games among kin
that was first published by Grafen (1979), although discovered
independently by Fagen (1980). In a contemporaneous review
article, Hines and Maynard Smith (1979) observed that there are
two approaches to extending the concept of ESS from ordinary
games to games among kin. The personal-fitness method modifies
an individual's fitness to allow that if opponents are related, then a
u-strategist is more likely than other members of its population to
meet opponents adopting the strategy u. The ‘inclusive-fitness’
method, which ultimately derives from Hamilton (1964; see also
Mirmirani& Oster, 1978; Treisman, 1977), adds to each contestant's
payoff r times its opponent's payoff, where r is their coefficient of
relatedness. Hines and Maynard Smith (1979) regarded the
personal-fitness method as the correct one, but found the
inclusive-fitness method useful in providing necessary conditions
for a personal-fitness ESS. However, Mesterton-Gibbons (1996)
showed that the inclusive-fitness method provides necessary
conditions only for a special class of (matrix) games (hencewe used
the personal-fitness approach in our main analysis). Because the
underlying game belongs to the special class considered by Hines
and Maynard Smith (1979), we reanalyse it here using the
inclusive-fitness approach.

In this alternative approach to games among kin, a u-strategist's
ordinary payoff against a v-strategist is augmented by r times the
payoff to the v-strategist, where r is their coefficient of relatedness.
Thus f (u, v) is replaced by

Jðu; vÞ¼ f ðu; vÞ þ rf ðv;uÞ (A6)

where f is defined by equation (18). Comparing equation (A6) with
equation (19), we see that the personal-fitness approach and the
inclusive-fitness approach yield different kin-modified reward
functions, so it is unsurprising that in general their predictions
differ (Mesterton-Gibbons, 1996). Despite that, their properties
often overlap; in particular, if f is a bilinear function, as here, then v*
is a personal-fitness ESS among kin only if it is also an inclusive-
fitness ESS (Hines & Maynard Smith, 1979).

An interior inclusive-fitness ESS p2 (0, 1) cannot exist, because
the only possible candidate for p can be invaded by either C or D. So
any ESS is again a boundary ESS.

In place of equation (A3) we obtain

Jð1;1Þ�Jð0;1Þ¼ ð1� rÞq
2ð1þ qÞ2

>0; (A7)

so that D remains an ESS for any value of r (already a different
prediction); and in place of equation (A4) we obtain

Jð0;0Þ�Jð1;0Þ¼ ðf4d� 3þ ð4d� 1Þrgqþ ð4d� 1Þr � 1Þq
2ð1þ qÞ2ð2dþ qÞ

(A8)

so that C is an inclusive-fitness ESS whenever (q, r) lies above the
dashed line from (0, r1) to (q1c , 0) in a lighter shaded region in Fig. 3,
where r1 and q1c are defined by equations (21) and (23), respec-
tively. Thus, as expected, C or D is a personal-fitness ESS only if it is
also an inclusive-fitness ESS. Nevertheless, there exists both a re-
gion in parameter space where C is an inclusive-fitness ESS but not
a personal-fitness ESS (above the dashed line in a lighter shaded
region of Fig. 3) and a sizeable region in parameter space where D is
an inclusive-fitness ESS but not a personal-fitness ESS (the whole of
a darker shaded region).


	Defection on the bounty? Kinship and cooperative exploitation of a rich, essential but dangerous resource
	The game among unrelated individuals
	One Attacker, One Defender
	Two Attackers (and One Defender)
	Attacker Strategies

	The game among KIN
	Discussion
	Conclusion

	Author Contributions
	Declaration of Interest
	Acknowledgments
	References
	Appendix 1. EES Analysis
	Appendix 2. Effect of Kinship: the Inclusive-fitness Approach


