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Abstract
Generalist and specialist predators are successfully used in biocontrol programs in greenhouse vegetable crops, like tomato. 
A greenhouse ecosystem is rather simple and provides an excellent opportunity for developing predator–prey decision 
models. Three systems were selected: (1) the generalist predatory bug Macrolophus pygmaeus and the greenhouse whitefly 
Trialeurodes vaporariorum, (2) the generalist predatory bug Nesidiocoris tenuis and the tobacco whitefly Bemisia tabaci and 
(3) the specialist predatory mite Phytoseiulus persimilis and the spider mite Tetranychus urticae. The study is based on an 
extensive field dataset. No complex mathematical predator–prey models were developed. A binomial variable was given the 
value of “0” for the period when the pest was not under control. As soon as the population declined after the peak density, 
this variable was given a value of “1”. The relationship between the densities of the prey and the predator was checked using 
a logistic regression model. The validated models do not calculate future pest densities but rather predict when pest control 
should be initiated, based on the number of pests and predators present at a certain time. Numerical simulation of the prey 
isoclines showed an L-shaped curve for the generalist predators and a linear curve for the specialist predators. Our simple, 
empirical modelling approach provides satisfactory models for biocontrol purposes. When combined with a standardized 
monitoring protocol, these models can be implemented in decision tools. In the future, more data will allow a machine learn-
ing approach, in which additional parameters like temperature, humidity, and time can be included.

Keywords  Bemisia tabaci · Biocontrol · Macrolophus pygmaeus · Nesidiocoris tenuis · Phytoseiulus persimilis · 
Tetranychus urticae · Trialeurodes vaporariorum

Key message

•	 Generalist and specialist beneficials are used in green-
house crops to control pests.

•	 Predator–prey population models can be used to predict 
pest outbreaks and prevent pesticide applications. Cur-
rently, no such models are on the market for decision 
making.

•	 Simple, logistic regression models were built for three 
economic important pests and their predators in tomato 
crops.

•	 The predicted population dynamics are in line with gen-
eralist and specialist predator ecology.

•	 The models were validated and deemed satisfactory for 
practical guidance in biocontrol actions.

Communicated by P. Han.

 *	 R. Moerkens 
	 Rob.moerkens@biobestgroup.com

1	 Research Centre Hoogstraten, Voort 71, 2328 Hoogstraten, 
Belgium

2	 Evolutionary Ecology Group, University of Antwerp, 
Universiteitsplein 1, 2610 Wilrijk, Belgium

3	 Research Station for Vegetable Production, Duffelsesteenweg 
101, 2860 Sint‑Katelijne‑Waver, Belgium

4	 IFAPA, Centro La Mojonera, Camino de San Nicolas 1, 
04745 La Mojonera, Spain

5	 Biobest Group N.V., Ilse Velden 18, 2260 Westerlo, Belgium

http://orcid.org/0000-0002-9882-9313
http://crossmark.crossref.org/dialog/?doi=10.1007/s10340-020-01256-0&domain=pdf


286	 Journal of Pest Science (2021) 94:285–295

1 3

Introduction

The preventative release of generalist predators as biocontrol 
agents in IPM programs has become common practice in 
European greenhouse vegetable crops as they can develop 
and build up a strong standing army in the absence of the 
target pest (e.g. Nomikou et al. 2002; Messelink and Janssen 
2014; Moerkens et al. 2017; Brenard et al. 2018). Specialist 
predators (or parasitoids) are released more curatively to 
target specific pests (e.g. Van Lenteren et al. 1996; Alatawi 
et al. 2011).

A big advantage of a greenhouse ecosystem compared to 
open, natural conditions is its simplicity. A Northwestern 
European greenhouse can be considered as a closed eco-
system with very few movements to the surrounding area 
(in comparison with open fields). The vegetation/crop is a 
monoculture, and the number of prey and predator species 
is small, during some periods even limited to one predator 
and one pest. Such one-to-one predator–prey interactions 
are rare in natural conditions. The simplicity of ecosystems 
in greenhouses allows more controlled ecological studies of 
a few species. Nevertheless, one or two pest species com-
bined with one or more generalist or specialist predators can 
result in complex population dynamics. Greater insight into 
these dynamics would allow a better interpretation of the 
predator–prey interactions in the field and would improve 
biocontrol strategies.

The classic population model is a Lotka–Volterra preda-
tor–prey model (Gause et al. 1936). Models that are more 
complex have been proposed (e.g. Hanski et  al. 1991; 
Turchin and Hanski 1997; Hanski et al. 2001; Mukhopad-
hyay and Bhattacharyya 2013). These models are very theo-
retical and try to convert several biological interactions in 
a mathematical formula. The drawback is their complex-
ity when more parameters are included. Validation with 
extended field data on different locations is missing. A good 
example of this is the well-studied predatory mite Phytoseiu-
lus persimilis (Athias-Henriot) (Acari: Phytoseiidae) and its 
prey, two-spotted spider mite Tetranychus urticae (Koch) 
(Acari: Tetranychidae). Several predator–prey models have 
been developed in the past (Bernstein 1985; Bancroft and 
Margolies 1999; Kozlova et al. 2005; Kuang et al. 2017), but 
validation in practical conditions is missing. For example, 
Kozlova et al. (2005) describes a deterministic model with 
diffusion and time delay, which gave a reasonably good fit 
to the field data. The goal of their study was not to describe 
the data but to determine the parameters and the type of 
behaviour that takes place in the particular system of prey 
and predator. For biocontrol purposes, it is sufficient to know 
the prey isocline (i.e. how many predators are needed to 
control the prey) in combination with the probability of a 

pest population being under control or not at a given point 
in time, which is the scope of our study.

In this study, three predator–prey systems (i.e. simpli-
fied systems with just one predator and only one of its prey 
species) which are common in tomato greenhouses were 
selected. The first predator–prey system is the predatory bug 
Macrolophus pygmaeus (Rambur) (Hemiptera: Miridae) and 
the greenhouse whitefly Trialeurodes vaporariorum (West-
wood) (Hemiptera: Aleyrodidae). Macrolophus pygmaeus is 
a zoophytophagous generalist predator, which is capable of 
controlling several pest species like whiteflies, aphids, mites, 
thrips and Lepidoptera (e.g. Enkegaard et al. 2001; Perdikis 
and Lykouressis 2002; Blaeser et al. 2004; Castañé et al. 
2004; Alomar et al. 2006; Urbaneja et al. 2009). It can main-
tain its population by feeding on the plant while prey densi-
ties are low or absent (e.g. Perdikis and Lykouressis 2000; 
Ingegno et al. 2011). Population growth is accelerated when 
supplementary food is provided after inoculative release in 
the crop (Moerkens et al. 2017; Brenard et al. 2018, 2019).

The second predator–prey system is the predatory bug 
Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae) and the 
tobacco whitefly Bemisia tabaci (Gennadius) (Hemiptera: 
Aleyrodidae), with a similar interaction as between M. pyg-
maeus and T. vaporariorum. Nesidiocoris tenuis is also a 
zoophytophagous generalist predator and is mostly released 
in South-European (Spain, Canary Islands, Sicily) tomato 
greenhouses as a biocontrol agent against B. tabaci (Car-
nero et al. 2000; Calvo et al. 2012a, b) and Tuta absoluta 
(Meyrick) (Lepidoptera: Gelechiidae) (Urbaneja et al. 2009; 
Calvo et al. 2012b; Urbaneja et al. 2012).

The third predator–prey system is the predatory mite P. 
persimilis and the two-spotted spider mite, T. urticae. Phy-
toseiulus persimilis is a specialized feeder of spider mites 
and is commonly released as a biocontrol agent (e.g. Gough 
1991; Drukker et al. 1997; Opit et al. 2004).

The population dynamics of these three predator–prey 
interactions in tomato greenhouses were simplified and sim-
ulated using a common logistic regression with the intention 
to predict a probability of control of the pest, based on the 
number of predators and prey at a certain time. The prey 
isoclines were computed numerically and compared between 
two generalist predators (M. pygmaeus and N. tenuis) and a 
specialist predator (P. persimilis).

Materials and methods

Data collection

Predator–prey model: M. pygmaeus–T. vaporariorum

Population dynamics were recorded in seven experimental 
greenhouse compartments (size between 500 and 1500 m2) 
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during several years (2016–2018) at Research Centre Hoog-
straten (Belgium) and at eight commercial, Belgian tomato 
greenhouses with a minimum of four hectares per green-
house. The different locations had a wide diversity of dif-
ferent tomato varieties (beef, cluster and specialty tomatoes) 
each with their own climate conditions. Tomato plants are 
cultivated year round in Belgium with artificially lit and non-
lit crops (Moerkens et al. 2016a, b). More details on the 
different locations are described in Table 1.

The number of adult whiteflies and adult mirids were 
counted on yellow sticky traps (YSTs) (e.g. Bug-scan Dry, 
Biobest, Belgium), which is a common monitoring method 
in tomato greenhouses (Böckmann et al. 2015; Pinto-Zeval-
los 2013). These traps (25 × 10 cm) were hung just below the 
head of the plant on 185 fixed locations distributed through-
out the different monitored greenhouses. Every week or 
maximum two weeks, the population densities of predator 
and prey were manually counted on all 185 YSTs. The YSTs 
were replaced during every sampling occasion. Macrolophus 
pygmaeus densities on YSTs are much lower compared to 
whiteflies and can vary a lot in time and between locations 
(unpublished observations). Therefore, mirid densities were 
counted on two sides of the YST (whiteflies only on one 
side) and were averaged over a minimum of four YST’s. 
These four YSTs were located in the same plant row (at 
commercial greenhouses) or in the same greenhouse com-
partment (at Research Centre Hoogstraten). Thus, at each 

time point, a minimum of four (eight sides) averaged YST 
counts were used for M. pygmaeus. This way variation in 
mirid counts was minimized. In total, 2730 unique preda-
tor–prey combinations were collected, divided over multiple 
greenhouses and time points. The total dataset contains a 
wide range of predator/prey ratios, including extreme values 
during pest outbreaks.

Macrolophus pygmaeus individuals were released at the 
start of each new crop cycle. The total number, the distri-
bution and the feeding strategy differ between growers, as 
they work with different producers (e.g. Biobest Group N.V., 
Belgium and Koppert N.V., the Netherlands). A common 
release strategy is described by Moerkens et al. (2017). The 
whitefly populations naturally persist and disperse each 
cropping season, no extra releases were carried out. Periods 
when growers applied plant protection products or periods 
when secondary pests (e.g. T. absoluta, A. lycopersici and T. 
urticae) occurred were removed from the datasets in order 
to obtain one-to-one predator–prey interactions.

Predator–prey model: N. tenuis–B. tabaci

Population dynamics were recorded at four commercial 
tomato greenhouses in the Almeria province of Spain in 
2018, each with a different climate condition. More details 
are presented in Table 1.

Table 1   Model and validation dataset collection details for M. pygmaeus–T. vaporariorum, N. tenuis–B. tabaci and P. persimilis–T. urticae pred-
ator–prey interactions

Different columns represent the predator–prey interaction, the year of sampling, the individual grower, the location (city) of the greenhouse, 
whether artificial light was used (lit/non-lit crops), the number of yellow sticky traps or plants that were sampled, the number of data assess-
ments (#YST or plants multiplied by sampling occasions (time)) and whether the dataset was used for model input or validation
*Research Centre Hoogstraten

Predator–prey Year Grower Location (Belgium) Lit/non-lit # YST/plants # assessments Dataset

M. pygmaeus–T. vaporariorum 2016 Grower A Hoogstraten Lit 42 588 Model
2017 PCH* Hoogstraten Lit 8 56 Model
2018 PCH* Hoogstraten Non-lit 53 904 Model
2018 PCH* Hoogstraten Lit 12 293 Model
2018 Grower B Putte Lit 10 145 Validation
2018 Grower C Rijkevorsel Lit 10 97 Validation
2018 Grower D Rijkevorsel Non-lit 10 176 Validation
2018 Grower E Rijkevorsel Non-lit 10 101 Validation
2018 Grower F Broechem Lit 10 140 Validation
2018 Grower F Broechem Non-lit 10 100 Validation
2018 Grower B Putte Non-lit 10 130 Validation

N. tenuis–B. tabaci 2018 Grower G La Venta Del Viso Non-lit 20 320 Validation
2018 Grower H Vícar Non-lit 20 320 Model
2018 Grower I Vícar Non-lit 20 320 Validation
2018 Grower J La Cañada Non-lit 20 260 Validation

P. persimilis–T. urticae 2016 PCH* Hoogstraten Non-lit 252 2016 Model
2017 PCH* Hoogstraten Non-lit 476 5712 Validation
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The sampling method was identical to the one described 
above. Also for N. tenuis an average density for each sam-
pled tomato row was calculated (10 YST sides). Every two 
weeks, the population densities were counted on 80 YSTs 
at fixed locations in the greenhouses. In total, 1220 unique 
YSTs were sampled. The total dataset contained a wide 
range of predator/prey ratios, including extreme values dur-
ing pest outbreaks.

Like M. pygmaeus, N. tenuis individuals are released in a 
similar way at the start of each crop cycle and whitefly popu-
lations naturally persist and disperse each cropping season. 
Again, periods when growers applied plant protection prod-
ucts or periods when secondary pests occurred were omitted.

Predator–prey model: P. persimilis–T. urticae

All data were obtained at Research Centre Hoogstraten, 
Hoogstraten, Belgium. During two subsequent cropping 
seasons in 2016 and 2017, tomatoes were planted in two 
different semi-commercial greenhouses of 200 m2 in Janu-
ary 2016 and 2017 (Table 1). Crawling insects, like mites, 
require a different sampling approach compared to flying 
insects. Mites cannot be monitored using YSTs and require 
sampling on the plant. In 2016, 252 plants were monitored 
weekly between 11 May 2016 and 29 June 2016. In 2017, 
476 plants were sampled weekly between 21 March 2017 
and 6 June 2017. In total, there were 600 plants present in 
each greenhouse compartment. Every week, the number 
of adult T. urticae and P. persimilis were counted with the 
naked eye on the fourth leaf starting from the head of the 
plant. From previous experience, we know that the third 
to the fifth leaves hold the most spider mites (unpublished 
observations). Spider mites were released on 30 March in 
2016 and 7 March in 2017. Tomato leaves infested with T. 
urticae were randomly distributed in the greenhouse, which 
resulted in hotspots of spider mites and plants with less 
spider mites. The predatory mite P. persimilis (Phytosei-
ulus-System, Biobest Group N.V., Westerlo, Belgium) was 
homogenously released at a dose of 20 ind/m2 in the head 
of each plant on 12 May in 2016 and 21 April 2017. The 
predatory bug M. pygmaeus was not released in these green-
houses. The number of whiteflies remained very low during 
the 8 and 11 week interval in 2016 and 2017, respectively. 
Only a few individuals were spotted by the end of the experi-
ment. Therefore, spider mites and P. persimilis were the only 
pest and predator of significance present in the greenhouse.

Logistic regression model

The population dynamics of the different predators and prey 
are typically characterized by a strong population growth 
of the prey, followed by that of the predator (Fig. 1). Some-
times, the pest outbreak was too severe and the grower 

decided to use a chemical plant protection product. As men-
tioned earlier, the data were cut off at these moments and 
not considered for further analysis. For the logistic models, 
a variable “pest control” was created. This binomial variable 
was given the value of “0” for the period when the pest den-
sities were increasing. As soon as the population declined 
after the peak density, the pest control variable was given a 
value of “1”. This variable was created manually for each 
YST (flying insects) or plant (crawling insects) time series. 
If population densities were very low or confusing and no 
clear “0” or “1” value could be given, the data were omitted 
from the dataset. All datasets are independent between years 
and growers (Table 1.).

We quantified through a generalized linear model (glm) 
how the variable pest control yes (1) or no (0) changed in 
relation to the previous densities of the predator and the 
pest. This logistic regression was built with a binomial dis-
tribution and logit link function. The number of insects on 
the YSTs and the number of mites on the leaves were log 
transformed (log + 1) prior to the regression analyses. The 
statistical analysis started with a saturated model and inter-
actions, and non-significant main factors were dropped at a 
significance level of 0.05. Predicted probabilities from this 
logistic regression model were converted to their original 
state using the inverse logit formulae (expmodel parameters/
(1 + expmodel parameters). All statistics were carried out in R 
v.3.5.1 (R Core Team 2018). The used model input datasets 
are indicated in Table 1.

Model validation

The logistic regression model enables us to predict the prob-
ability of biocontrol at given pest and predator densities. In 
order to validate the model, the predictions of the model 
were compared to the observations of an independent data-
set. The datasets used for model validation are marked in 
Table 1. The output of the model is a probability (between 0 
and 1), while the observed data consist of values of either 0 
or 1 (no/yes control). Therefore, the model output probabil-
ity was rounded to 0.10 and grouped together according to 
the following categories: (0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 
0.70, 0.80, 0.90, and 1.00). For each category, the proportion 
of samples with actual, observed biocontrol (value 1) was 
determined. This way, we can compare the model output, 
which is a chance of biocontrol with the actual, observed 
proportion of biocontrol. Frans et al. (2018) describe a simi-
lar method for internal fruit rot in bell pepper. The slope 
and intercept of the regressions lines between observed and 
estimated proportions were checked whether they differed 
from unity and zero, respectively. All statistics were carried 
out in R v.3.5.1 (R Core Team 2018).
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Fig. 1   Averaged (± SE) popula-
tion densities of all datasets 
combined for three different 
predator–prey interactions, 
namely M. pygmaeus–T. vapo-
rariorum, N. tenuis–B. tabaci, 
P. persimilis–T. urticae. The 
binomial classification for peri-
ods when the prey population 
increases (0) or decreases (1) is 
indicated between brackets for 
each time point
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Calculation of prey isoclines

Simulation of prey isoclines requires calculation of a curve, 
along which the prey population neither grows nor declines 
as a function of the predator population. These are the points 
in time series of pest/prey densities where this series reaches 
its maximum. In order to use a logistic regression model, 
we have categorized the increasing phase of the pest densi-
ties as “0” and the decreasing phase, including the maxi-
mum, as “1” as illustrated in Fig. 1. Therefore, the model 
will predict whether the pest population will increase (0) or 
decrease (1). The output of this model is not “0” or “1” but 
a probability between “0” and “1”. To determine the point of 
maximum pest density (i.e. data point on the pest isocline), 
we need to determine the required density of predators. This 
was achieved by numerically changing the predator density 
values for a range of prey densities until the model output 
reached a chance of 50%. The prey isocline was defined as a 
curve where the prey population had 50% chance of increas-
ing or decreasing, which is similar to the classic definition of 
a curve along which the prey population neither grows nor 
declines. Above this curve, the pest population has a higher 
chance to decrease and below this curve the pest popula-
tion has a higher chance to increase. In addition, curves that 
mark when the pest population has a 25% and 75% chance 
of increasing were added to the plots.

Results

Data collection

As an illustration of the datasets, the total averaged popula-
tion densities of predator and prey are given in Fig. 1. After 
removing zero values (prey) and unusable data (unclear “0” 
and “1” values), 1829 and 967 data points were usable for 
the M. pygmaeus–T. vaporariorum model for the model 
input and validation, respectively. For the N. tenuis–B. 

tabaci model 319 and 527 data points remained and for P. 
persimilis–T. urticae 2016 and 1832 data points.

Logistic regression model

The interaction effect between the densities of the preda-
tor and prey was dropped from the model for both M. pyg-
maeus–T. vaporariorum (glm: z = − 0.283: p = 0.777) and N. 
tenuis–B. tabaci (glm: z = − 0.366; P = 0.714). The additive 
effect of the predator and the prey was highly significant 
for both predator–prey models (P < 0.05). For P. persimi-
lis–T. urticae, the saturated model was significantly better 
than simplified ones. All statistical details can be found in 
Table 2.

Model validation

The relations between the observed and estimated chances of 
biocontrol were checked with a linear regression. The slope 
and the intercept of this regression for the M. pygmaeus–T. 
vaporariorum model tested not significantly different 
from unity (t = − .926; P = 0.090) and zero (t = − 0.539; 
P = 0.605), respectively (Fig. 2). Likewise, the slope and the 
intercept for the N. tenuis–B. tabaci model tested not signifi-
cantly different from unity (t = − 0.131; P = 0.899) and zero 
(t = 0.965; P = 0.363), respectively (Fig. 2). Similar results 
were found for the P. persimilis–T. urticae model for the 
slope (t = − 0.592; P = 0.580) and the intercept (t = − 0.233; 
P = 0.825) (Fig. 2). One outlier was removed from the data-
set at the estimated chance for biocontrol of 0.60 because of 
low sample size (n = 23). Overall, the values on the x-axis 
(observed) are equal to the values on the y-axis (estimated) 
for all three predator–prey models.

Calculation of prey isoclines

The prey isoclines of the whiteflies have an L shape in rela-
tion to their generalist predators (Fig. 3). At low prey densi-
ties (for T. vaporariorum < 100 and B. tabaci < 30), more 

Table 2   Parameter estimates 
and statistics of the logistic 
regression models for each 
predator–prey interaction

Predator–prey Parameter Estimate SE Statistics

M. pygmaeus–T. vaporariorum Intercept − 5.218 0.271 z = − 19.25; P < 0.0001
Predator 1.677 0.155 z = 10.82; P < 0.0001
Prey 1.518 0.131 z = 11.62; P < 0.0001

N. tenuis–B. tabaci Intercept − 4.233 0.870 z = -4.87; P < 0.0001
Predator 2.395 0.387 z = 6.19; P < 0.0001
Prey 1.510 0.496 z = 3.04; P = 0.0023

P. persimilis–T. urticae Intercept − 3.135 0.288 z = − 10.88; P < 0.0001
Predator 12.025 0.986 z = 12.20; P < 0.0001
Prey 0.728 0.135 z = 5.39; P < 0.0001
Predator × Prey − 3.040 0.406 z = − 7.50; P < 0.0001
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mirids are needed to control the pest population. N. tenuis 
is able to control B. tabaci at lower densities on the yellow 
sticky trap compared to M. pygmaeus and T. vaporariorum. 
However, the catch rate on the yellow sticky trap can be 
different for the different species. Therefore, the densities 
can be biased, which makes comparison between species 
difficult.

The specialist P. persimilis has a more linear/horizon-
tal relationship with his prey (Fig. 3). More P. persimilis is 
needed at increasing spider mite densities. An observation 
of only one adult P. persimilis per leaf is sufficient to reduce 
the spider mite population almost independent of the pest 
density.

Prey isoclines with a probability of 0.25 and 0.75 are 
shown in Fig. 3. Above the prey isocline, the prey population 
has a higher tendency to decrease. Below the prey isocline, 
the pest population will most likely increase.

Discussion

Monocultures in greenhouse crops provide a perfect semi-
natural environment for studying population dynamics of 
different predators and their prey. In comparison with natural 
ecosystems with a multitude of variables, greenhouses are 
simple, semi-enclosed ecosystems, wherein even climate 
conditions are standardized within specific boundaries for 
crop cultivation. Data collection of one-to-one predator–prey 
systems in tomato greenhouses provided a large database 
of three study systems: M. pygmaeus–T. vaporariorum, N. 
tenuis–B. tabaci and P. persimilis–T. urticae. For each pred-
ator–prey system a logistic regression model was fitted and 
validated based on field data collected at semi-commercial 
and commercial companies. We do not predict population 
densities, but the probability of being in the increase or 
decrease phase of the pest population, given the population 
sizes of prey and predators.

Generalist and specialist predators interact in a differ-
ent way with their prey. When prey is scarce, a generalist 
predator will add alternative prey or food sources to their 
diet (Křivan1996, Turchin and Hanski 1997; Hanski et al. 
2001; van Baalen et al. 2001; Symondson et al. 2002; Muk-
hopadhyay and Bhattacharyya 2013). For both M. pygmaeus 
and N. tenuis and their prey, an L-shaped prey isocline was 
simulated based on our rather simple logistic regression 
model (Fig. 3). Such an L-shaped isocline was previously 

Fig. 2   Validation of the logistic regression models for all three preda-
tor–prey systems. Estimated probability of biocontrol from the logis-
tic regression models, and observed chance of biocontrol by manual 
counting of 0 and 1’s. Numbers in brackets indicate the number of 
data points for each category (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 
1)
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described as a prey refuge (Křivan 2011; Křivan and Priya-
darshi 2015). This means that a part of the prey population 
was inaccessible for the predator. Such an L shape is not 
illogical for a generalist predator as they will add alternative 
prey or food sources (i.e. tomato fruit/leaves) to their diet 
when the prey becomes scarce. Thus, at low prey densi-
ties, much higher predator densities are required to control 
the pest. Mirids, like M. pygmaeus and N. tenuis, always 
require plant food in their diet for water and nutrient uptake 
(Moerkens et al. 2016; Urbaneja-Bernat et al. 2019). They 
can also survive on the plant when prey is absent or scarce 
(e.g. Perdikis and Lykouressis 2000; Ingegno et al. 2011). 
In fact, the L shape can be considered as a lack of encounter 
rates between predator and prey and/or limited searching 
efficiency of the predator. A prey would not go extinct very 
quickly in combination with a generalist predator, as they 
ideally reach a stable equilibrium point. Our model does 
not allow prediction of the predator isocline or calculations 
of equilibrium points. However, Fig. 1 illustrates that both 
predator and prey densities remain within an acceptable 
range (based on personal communication with the growers) 
after the pest population peak for both M. pygmaeus and N. 
tenuis. At very high prey densities the carrying capacity of 
the environment/crop will theoretically limit the reproduc-
tion of the prey and less predators will be required to reduce 
the pest population. Such prey isoclines are characterized 
by a “hump”. The classic example of such a model is the 
Rosenzweig–MacArthur model (Rosenzweig and MacAr-
thur 1963). The combination of such a model with a “prey 
refuge” was described by Křivan (2011) and Křivan and Pri-
yadarshi (2015). Such a “hump” was not detected in the data, 
although the prey isocline has a slow decline at high prey 
densities. In other words, at increasing pest densities, less 
predators are required to achieve control of the population. 
We expect that the logistic regression model is not complex 
enough to show the expected “hump” in our data.

Specialist predators only feed on one prey type. Even at 
low prey densities, they will keep searching for this prey 
or they die. Therefore, specialist predator–prey systems are 
characterized by large oscillations through time (Turchin and 
Hanski 1997; Hanski et al. 2001; Symondson et al. 2002; 
Mukhopadhyay and Bhattacharyya 2013). A linear prey 
isocline is expected, as more predators are required when 
prey densities increase. Indeed, the prey isocline of the P. 
persimilis–T. urticae predator–prey system appeared to be 

a linear curve. When more spider mites are present, more 
predatory mites are required. The slope of this curve is not 
steep and becomes almost horizontal, which resembles the 
classic Lotka–Volterra model (Gausse et al. 1936). The trial 

Fig. 3   Numerical simulations of the logistic regression models. Prey 
isoclines were calculated at a probability of achieving biological con-
trol of 0.5. Prey isocline boundaries at 25 and 75% were included. 
The light grey areas represent situations where the pest population 
will increase because not enough predators are present (possibly extra 
control measurements are required). Similarly, the dark grey areas 
represent situations where the pest population will decrease (no fur-
ther control actions needed)
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did not last long enough to detect population oscillation in 
time. Figure 1 clearly shows a dramatic drop of both preda-
tor and prey on all plants, causing local extinctions of spi-
der mites and/or predatory mites. In addition, the “hump” 
caused by the carrying capacity of the crop was expected 
(Rosenzweig and MacArthur 1963), as it was included in 
other spider mite models (Kozlova et al. 2005; Kuang et al. 
2017), but was not observed. Again, we expect that the logis-
tic regression model is not complex enough to show these 
dynamics.

To conclude, this study provides actual, realistic gener-
alist and specialist predator–prey dynamics based on real 
field data. In order to model the essential parameters (i.e. 
prey isoclines and the chance of biocontrol), the available 
data were simplified and complex mathematical modelling 
was avoided. The validated models are easy to interpret. We 
acknowledge the fact that more complex dynamics, like the 
lack of a carrying capacity, are masked in our modelling 
approach. However, for biocontrol purposes these models 
are easy to implement as a decision tool in the near future. 
Many Northwestern European tomato growers are monitor-
ing their crop using yellow sticky traps (Böckmann et al. 
2015; Pinto-Zevallos 2013). This way, they obtain quantita-
tive data of both the pest and the predator (e.g. whiteflies and 
mirids). Unfortunately, most growers focus on the densities 
of the pest and not the predators. Tools for more efficient 
monitoring, like automatic counting of pests and predators 
on yellow sticky traps, are under active development and will 
encourage growers to monitor in a standardized way (Moerk-
ens et al. 2019). In the near future, growers will be able 
to automatically count insects on yellow sticky traps using 
smartphone images. As these data are fed into the presented 
population models, a decision support system will increase 
the efficiency of biocontrol actions, like the release of addi-
tional biocontrol agents or spot treatments with selective 
pesticides. Currently the tools presented require some form 
of interpretation, as a greenhouse in which plant protection 
products has been used, or in which alternative predator or 
pest species are present can alter the associations between 
pest control and prey and predator densities. Therefore, we 
recommend the use of this decision support system in col-
laboration with a biological crop advisor. In the future, more 
data will allow comparable analysis using machine learning 
techniques, which will hopefully be able to forecast densi-
ties of predator and prey. Additional parameters like tem-
perature, humidity, growing stage of the plant, time (week, 
month), etc., can be added in order to increase the predictive 
power of the models and reduce variation.

Monitoring quantitative spider mite and predatory mite 
densities on leaves is more labour intensive. It is unlikely 
growers will start counting all these mites. New automatic 
approaches with standardized images of leaves are required. 

Only then, will the above described model be applicable on 
a large scale in greenhouses.
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