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Abstract

The quality of hosts for a parasitoid wasp may be influenced by attributes such as host

size or species, with high quality for successful development usually coincident with high

quality for larger offspring. This is not always the case: for the Scelionid wasp Trissolcus

basalis, oviposition in eggs of the Brown Marmorated Stink Bug, Halyomorpha halys, rather

than of the normal host, the Southern Green Stink Bug, Nezara viridula, leads to lower

offspring survival, but survivors can be unusually large. Adult female T. basalis engage in

contests for host access. As larger contestants are typically favoured in contests between

parasitoids, the larger size of surviving offspring may compensate for the mortality of

others. We construct a general game-theoretic model to explore whether size advantage

can sustain a maternal preference to utilize a more deadly host species. We find that size

advantage alone is unlikely to sustain a shift in host preference, yet such an outcome is

possible when size asymmetries act simultaneously with advantages in host possession

(ownership effect). Halyomorpha halys is an invasive pest of major agro-economic impor-

tance in Europe and the Americas, and use of its eggs as hosts by native parasitoids such

as T. basalis has been seen as an evolutionary trap due to their high developmental mor-

tality. Our model suggests that the recently discovered effect of host choice on offspring

size may provide an escape from the trap via effects on contest biology of T. basalis which
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could foster a more stable association with H. halys. An evolutionary shift in the repro-

ductive value of H. halys could increase the efficiency of T. basalis as a biological control

agent of this invasive stink bug pest.

Keywords: Host species, Reproductive value, Size advantage, Ownership advantage,

Evolutionarily stable strategy, Trissolcus basalis, Brown Marmorated Stink Bug,

Halyomorpha halys
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1. Introduction

Juvenile parasitoid wasps develop on the resources provided by the body of a single

host. The quality and quantity of the resource can be influenced by, for instance, the host’s

size and by its developmental stage and these attributes may then be manifest in terms of

parasitoid developmental mortality and/or the size, fecundity and longevity of surviv-

ing offspring, all of which are components of evolutionary fitness (Godfray, 1994). Many

species of parasitoids can develop from several or even many species of hosts (oligophagy

and polyphagy, respectively) and variation, in terms of nutritional composition, size and

defences against parasitism, between host species can be a major determinant of para-

sitoid fitness parameters, in turn influencing host acceptance decisions by foraging adult

females.

In some parasitoids, development in a given host species may negatively influence the

probability of offspring survival to adulthood and yet positively influence the characteris-

tics of those offspring that do survive. This is the case in Trissolcus basalis (Hymenoptera:

Sceleonidae): oviposition into eggs of the invasive Brown Marmorated Stink Bug (Ha-

lyomorpha halys, Hemiptera: Pentatomidae) leads to far lower offspring survival (with

estimates ranging from 0− 6% (Rondoni et al., 2017; Peri et al., 2021) to 38% Balusu et al.

(2019)) than oviposition into eggs of its main host, the Southern Green Stink Bug (Nezara

viridula, Hemiptera: Pentatomidae), 84% (Cusumano et al., 2011; Peri et al., 2021), but

female offspring that survive are typically much larger (25% increase in tibia length, Peri

et al., 2021). There is a substantial difference in the size of the host eggs between H. halys

and N. viridula, which is likely to be the key factor leading to an increase in the size of

the T. basalis emerging from the invasive stink bug host. Among adult female parasitoid

wasps, larger size is generally associated with higher fecundity (Hardy et al., 1992) and

foraging ability (Karsai et al., 2006; Visser, 1994). One aspect of foraging is the ability to

competitively acquire and subsequently defend hosts or patches of hosts against other

foraging females, and female T. basalis engage in such contests (Field & Calbert, 1998).

Although Field & Calbert (1999) did not find any effect of body size asymmetries be-

tween contestant parasitoids, the likely reason for this result is that they used only one

species of host (eggs of the pentatomid bug Agonoscelis rutila) and in consequence the

variation in T. basalis body size was not large. But when scelionid wasps emerge from

hosts of two different species that differ greatly in size and quality, wasp size differences

can be substantial and strongly affect contest resolution, as has been recently found by

Guerra-Grenier et al. (2020) in the wasp Telenomus podisi, an egg parasitoid that belongs

to the same family as T. basalis (Scelionidae). Across the parasitoid Hymenoptera, larger
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Table 1: Basic model parameters

Symbol Definition Constraints

α Reproductive (developmental) value of the more deadly host

relative to that of the natural host

0 < α < 1

θ Proportion of hosts that are of the more deadly species 0 < θ < 1

k Probability that a host is never found 0 < k < 1

λ Probability a large wasp outcompetes a normal wasp relative

to the probability a normal wasp outcompetes a large wasp

0 < λ < ∞

ρ Owner advantage: the extent beyond equiprobability to which

an owner is favoured to win a contest against an intruder of

equal size, expressed as a proportion of the maximum possible

probability increase

0 ≤ ρ ≤ 1

contestants are typically favoured in agonistic interactions between adults (Hardy et al.,

2013) and such body size effects can influence reproductive decisions by foraging females

in a game-theoretic manner (e.g. clutch size optima, (Mesterton-Gibbons & Hardy, 2004;

Goubault et al., 2007). A further important factor influencing contest outcome in wasps

such as T. basalis is prior ownership status (Field & Calbert, 1998): females that arrive first

on a patch have an advantage against subsequent intruders. We consider both body size

and prior ownership effects in this study.

Accordingly, we develop here a game-theoretic model to address the following general

question: Can size advantage in contests among adults sustain a preference for a more

deadly (in terms of offspring developmental mortality) host by foraging females? For

greatest generality, and with future work in mind, we first formulate the model (in §2 and

especially Appendix A) in terms of a five-dimensional parameter space. The parameters

are: 1. The reproductive (developmental) value of the more deadly host relative to that

of the natural host, α; 2. The proportion of hosts that are of the more deadly species, θ; 3.

The probability that a host is never found, k; The probability a large wasp outcompetes a

normal wasp relative to the probability a normal wasp outcompetes a large wasp, λ; and

5. The owner advantage, defined as the increase in probability beyond 0.5 of an owner

winning a contest against an intruder of equal size, ρ: These five basic parameters are

recorded in Table 1. Note that, in the context of these definitions, we are referring to a
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wasp as “large” if it emerges from a host of the more deadly invasive species (H. halys)

and hence has a size advantage, and as “normal” if it emerges from a host of the native

species (N. viridula).

The model thus integrates non-contest (α, θ, k) and contest-related (λ, ρ) considera-

tions. All five parameters are dimensionless and in principle measurable, but in most

cases their measurement has yet to be addressed by empirical studies. As clarity of pre-

diction in theoretical work decreases with the number of parameters considered, we then

focus (§3) on the subset of the parameter space where size advantage in contests is most

relevant, thus reducing the dimension of the parameter space from five to two. We sub-

sequently revisit the higher-dimensional parameter space in §4 and in our concluding

discussion (§5).

Our model has a wide set of potential applications, given that species invasions are

likely to occur increasingly frequently due to both international transport and global cli-

mate change (Berthon, 2015; Abram et al., 2017). The model is nonetheless of most im-

mediate use in considering the invasion of European and American cropping systems by

the Brown Marmorated Stink Bug (Rice et al., 2014; Leskey & Nielsen, 2018; Stoeckli et al.,

2020) as the use of its eggs as hosts by native parasitoids such as Trissolcus basalis and Te-

lenomus podisi has been seen as an “evolutionary trap” due to the high or complete devel-

opmental mortality of offspring (Abram et al., 2014; Bertoldi et al., 2021; Costi et al., 2020;

Konopka et al., 2018; Tongon et al., 2019). An evolutionary trap arises when there exists a

disconnect between cues that organisms use to make behavioral decisions and outcomes

normally associated with those cues, and it can lead to a reduced survival/reproduction

of the trapped species if a population falls below a critical size threshold before adapta-

tion to a change in circumstances (Robertson & Blumstein, 2019; Schlaepfer et al., 2002,

2005). However, the recently discovered effects of host species on offspring size may pro-

vide an escape from the trap by providing a fitness advantage to surviving offspring via

enhanced performance in contests for future hosts.

2. Mathematical model

For the sake of simplicity, we consider a population of female-producing female para-

sitoids (thelytoky). Likewise for simplicity, we assume that there are only two adult body

sizes, large and normal, and that each egg surviving on a more deadly (Halyomorpha halys-

like) host becomes a large adult, whereas each egg surviving on a natural host becomes a

normal adult.

This population consists of three different types or strategies, distinguished by the

type of host they are willing to exploit. A C-strategist is the customary obligate exploiter
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Table 2: Strategies and accompanying notation

Strategy
Number

Strategy
Name Definition Frequency Fitness

1 C Customary natural host exploiter x1 W1

2 D Deadlier host exploiter x2 W2

3 U Undiscerning host exploiter x3 = 1− x1 − x2 W3

of natural (native) hosts, so its progeny are always of normal size. A D-strategist is an

obligate exploiter of the more deadly host (e.g., the invasive H. halys), so its progeny

are always large. A U-strategist is an undiscerning exploiter: its progeny are normal or

large according to whether it happens to have exploited a natural host or a more deadly

one. Let these three types occur in proportions x1, x2 and x3, respectively, so that C is

strategy 1, D is strategy 2 and U is strategy 3: our strategy notation and definitions are

summarized in Table 2.

As in Mesterton-Gibbons & Hardy (2004), we assume that an individual’s reward is

the expected number of surviving offspring from a suitable host. Without loss of gener-

ality, let the value of a natural host in terms of the average number of surviving offspring

from it be defined as the unit of fitness, and let the corresponding value of a more deadly

host be α units, where α < 1 because the parasitoid has much higher developmental

mortality in the more deadly host (94%) compared with levels observed in the natural

host (16%) (Peri et al., 2021). Note that α represents parasitoid survival and fecundity

on a more deadly host relative to that on a natural host, with “natural” developmental

mortality and fecundity built into the unit of fitness by our definition. For example, with

95% mortality on a more deadly host compared to 20% on natural hosts but with the

same fecundity we would have α = 0.05/0.8 = 0.0625; whereas if in addition survivors

from more deadly hosts were three times as fecund as natural survivors we would have

α = 3× 0.05/0.8 = 0.1875.

We assume that the frequencies of more deadly and natural hosts are θ and 1 − θ, re-

spectively, and hence that more deadly and natural hosts are located at rates proportional

to θ and 1 − θ. Correspondingly, in the absence of differential survival and fecundity,

progeny of a U-strategist would be θ
1−θ

times as likely to be large as to be normal. How-

ever, an egg is only α times as likely to survive and reproduce on a more deadly host as

on a natural one. Hence progeny of a U-strategist are only α · θ
1−θ

times as likely to be
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Table 3: Auxiliary or derived parameters

Symbol Definition Constraints

ωL Probability a randomly selected U-strategist is large ωL = αθ
αθ+1−θ

ωN Probability a randomly selected U-strategist is normal ωN = 1− ωL

qO Probability owner wins in contest between equals qO = 1
2
(1 + ρ)

qI Probability intruder wins in contest between equals qI = 1− qO

qOL Probability a large owner wins against a normal intruder qOL = λ(1+ρ)
1−ρ+λ(1+ρ)

qIN Probability a normal intruder wins against a large owner qIN = 1− qOL

qON Probability a normal owner wins against a large intruder qON = 1+ρ

1+ρ+λ(1−ρ)

qIL Probability a large intruder wins against a normal owner qIL = 1− qON

a Parameter of exponential distribution for arrival at host a > 0

p Length of vulnerable period of development for a host p > 0

large as to be normal. So the probability that a randomly selected U-strategist is large or

normal is ωL or ωN , respectively, where

ωL =
αθ

αθ + 1− θ
, ωN =

1− θ

αθ + 1− θ
. (1)

Note that we assume1

0 < α, θ < 1 (2)

throughout, so that (1) implies 0 < ωL, ωN < 1 as well.

We assume that, in contests between two large or between two normal individuals,

where neither has any advantage in terms of size, it is possible that prior ownership may

confer an advantage instead. Specifically, in a contest between two individuals of equal

size, the owner wins with probability qO and the intruder wins with probability qI , where

qO = 1
2
(1 + ρ), qI = 1

2
(1− ρ) (3)

with 0 ≤ ρ ≤ 1. We refer to ρ as owner advantage: it represents the extent beyond

equiprobability to which an owner is favoured to win in the event of a fight between

physical equals, expressed as a proportion of the maximum possible probability increase.

(From (3), the increase of probability beyond 1/2 is ρ/2; the maximum possible increase is

1/2; and ρ is the quotient of these two numbers.)
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In contests between large and normal individuals, however, greater size does confer

an advantage on the larger individual. Let a large individual be λ times more likely to

win against an individual of normal size than it would if it were itself of normal size,

where λ > 1. Then in a contest between a large owner and an intruder of normal size, the

owner wins with probability qOL and the intruder wins with probability qIN , where

qOL =
λ(1 + ρ)

1− ρ+ λ(1 + ρ)
, qIN =

1− ρ

1− ρ+ λ(1 + ρ)
. (4)

Likewise, in a contest between a normal owner and a large intruder, the owner wins with

probability qON and the intruder wins with probability qIL, where

qON =
1 + ρ

1 + ρ+ λ(1− ρ)
, qIL =

λ(1− ρ)

1 + ρ+ λ(1− ρ)
. (5)

Note that qOL + qIN = 1 in (4) and that qON + qIL = 1 in (5), as emphasized by Table 3.

As in Mesterton-Gibbons & Hardy (2004), we assume that there is a narrow time-

window in which a parasitoid can actually acquire a host and thus that each host is the

subject of at most one contest. To be able to reproduce, females must either find a suit-

able unguarded host and defend it against at most one intruder or take over a suitable

guarded host in a contest. We assume that acquired hosts have not been exploited before;

moreover, they are merely guarded—not exploited—during the narrow time-window.

Thus we do not consider, for example, the effect of intrinsic competition due to superpar-

asitism after ownership reversals (Field et al., 1997). To incorporate this effect and related

effects would render our model overly complex. We return to this point at the end of §5.

Let Z(T ) be the probability that a host is located by time T ; let Y (T ) be the probability

that a host is located some time after time T ; and let k be the probability that a host is

never found (during the entire vulnerable period of its development). Then multiplying

the probability 1 − Z(T ) that a host has not been found at time T by the (conditional)

probability 1− Y (T ) that it is not subsequently found yields

(1− Z(T ))(1− Y (T )) = k (6)

for any T : the bigger the value of Z(T ), the smaller the value of Y (T ). We assume that

time to next arrival at the host follows an exponential distribution with parameter a, so

that

Z(T ) = 1− e−aT , Y (T ) = 1− e−a(p−T ) (7)

and

k = e−aT e−a(p−T ) = e−ap (8)
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by (6), where p denotes the length of the vulnerable period of development for a host.

We further assume that location time T for a focal individual is uniformly distributed

between 0 and p, so that the average probability of a host being unguarded is

γ = E [1− Z(T )] = 1−
p

∫
0

1

p
Z(t) dt =

k − 1

ln(k)
(9)

where E denotes expected value.

We can now proceed to calculate expressions for the fitnesses to each of the three

strategies, which appear in Appendix A. These expressions depend explicitly on α, θ, ρ,

λ and k (both directly and indirectly through γ), but do not depend directly on either a or

p, whose effect on fitness is subsumed by k through (8). We therefore regard α, θ, ρ, λ and

k as the five basic dimensionless parameters of the model; we regard a and p as auxiliary

parameters; and all other parameters are derived parameters, which depend on one or

more of the basic parameters. All of the parameters are defined in either Table 1 or Table

3 for ease of reference.

The corresponding evolution of the strategy frequencies is governed by the replicator

equations (Taylor & Jonker, 1978; Hofbauer & Sigmund, 1998). For i = 1, 2, 3, let Wi

denote the fitness to strategy i, whose frequency is xi. Then the governing equations are

dxi

dt
= xi{Wi −W}, i = 1, . . . , 3, (10)

where t denotes time and

W =

3
∑

i=1

xiWi (11)

is the average fitness of the entire population. Note that, because

x1 + x2 + x3 = 1, (12)

the first two equations in (10) imply the third, which therefore we do not need for the

analysis that follows.

3. Analysis of the reduced model

In general, the purpose of our analysis is to predict the mix of strategies to which the

population evolves in response to prevailing ecological conditions. In the first instance,

the mix of strategies is represented by the three-dimensional vector (x1, x2, x3), whose

components are the frequencies x1, x2 and x3 of strategies C, D and U , respectively, as

defined in Table 2. However, if the proportions x1 of C and x2 of D are known, then the

proportion x3 = 1− x1 − x2 of U is also known, by (12). Hence, in practice, the evolution
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of the strategy mix is fully determined by the path of the two-dimensional vector (x1, x2),

which always corresponds to a point on or inside the triangle

∆ = {(x1, x2)|0 ≤ x1 + x2 ≤ 1} (13)

with vertices at (1, 0), (0, 1) and (0, 0); we refer to ∆ as the phase-plane triangle. Ecological

conditions are represented by the five basic parameters α, θ, k, λ and ρ, as defined in Table

1. Thus, our analysis seeks to predict the final value of (x1, x2) as a function of α, θ, k, λ

and ρ. Note that, where we wish to emphasize the dependence on time, t, of the strategy

mix, in place of (x1, x2) we write (x1(t), x2(t)).

Before proceeding with our analysis, it is useful to note which evolutionary endpoints

are at all possible. In principle, there are seven types of static equilibria and one type

of dynamic equilibrium that can emerge. The seven possible static equilibria are three

monomorphisms (of C, D or U) and four polymorphisms: C with D, or CD; C with U ,

or CU ; D with U , or DU ; and all three strategies, or CDU . The possible dynamic equi-

librium is a periodic “limit cycle” in which the frequencies of all three strategies oscillate

over time. In practice, however, it is impossible for the population to evolve to D or U

(Appendix D); moreover (§3.1), it is also impossible for the population to evolve to CD

except in the event that a mutant U-strategist could never arise, which we discount as un-

realistic. Thus, in practice, the possible evolutionary endpoints are the monomorphism

C, in which case the deadly host is never exploited by any strategist (meaning that in a

biocontrol scenario, the invasive host is avoided by the resident parasitoids); the polymor-

phisms CU , DU and CDU ; and a dynamic polymorphism of all three strategies. These

polymorphisms show that inclusion of exploitation of the deadly host is thus a priori a

possible strategic outcome of the evolutionary process.

The expressions for fitness (Appendix A) in general depend both on the frequencies

x1, x2 and x3 = x1−x2 (of strategies C, D and U , respectively) and on the five basic param-

eters (α, θ, ρ, λ and k) and are, in general, too complex for tractable analysis. Therefore,

here we focus our attention on the important limit as a → ∞ in (8), in which all hosts

are eventually found, and thus contest behaviour is most relevant. In this limit, which

can be regarded as the limit of high parasitoid density, the expressions for fitness simplify

substantially (Appendix B). Because the correct expressions for fitness are obtained by

setting k = 0 and hence γ = 0 in (A.8), (A.11) and (A.19), we will refer to this limit largely

as the k = 0 limit (as opposed to the a → ∞ limit). To make things as simple as possible,

however, we now also assume that there is no owner advantage and that greater size is

always decisive in a contest, in the sense that a large individual always wins against a
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normally sized one. Thus ρ = 0, λ → ∞ in addition to k = 0, and (3)–(5) reduce to

q0 = qI =
1
2
, qOL = qIL = 1, qON = qIN = 0. (14)

We refer to this model as our reduced model. The evolution of the population now de-

pends only on two dimensionless parameters, namely, the relative reproductive (devel-

opmental) value α and frequency θ of the more deadly host, and on the proportions x1,

x2 of C and D strategists, with the proportion x3 of U implied by (12).

In a theoretical exploration, focusing on a low-dimensional parameter space facilitates

clarity of prediction. Nevertheless, departures from the above assumptions are discussed

in §4, where we consider the effects of different values of the other three parameters from

the values assumed here (specifically, we consider finite λ and positive ρ and k).

Table 4: Regions in the parameter square S corresponding to equilibria on the boundary of ∆

Region Equilibria

i Unstable nodes at (1, 0) and saddle points at (0, x2s) and

(x1r, x2r), where x1r + x2r = 1

ii Saddle points at (1, 0) and (0, x2s)

iii A stable node at (x+
1b, 0) and saddle points at (x−

1b, 0), (0, x2s)

and (1, 0)

iv A stable node at (1, 0) and saddle points at (x+
1b, 0) and (0, x2s)

v A stable node at (1, 0)

vi A stable node at (x+
1b, 0)

Table 5: Regions in the parameter square S corresponding to a (static) equilibrium in the interior of ∆

Region Equilibrium in ∆ on the line segment Λ joining (0, 0) to (1
2
, 1
2
)

Ia A stable node

Ib An unstable node

IIa A stable focus

IIb An unstable focus

III No interior equilibrium point
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(b) Interior equilibrium (ρ = 0, λ → ∞, 0 = 0)

Figure 1: Equilibria corresponding to different subsets of the parameter square S.

The parameter square S represents ecological conditions in the reduced model by virtue

of containing all possible pairs of values of α and θ. This figure is best regarded as a

necessary stepping stone to Figure 5, which shows only the global attractor, whereas this

figure yields information about all equilibria (including non-attractors, which have no

ecological relevance). The left-hand panel corresponds to Table 4; the right-hand panel

corresponds to Table 5.

(a) Regions in S corresponding to equilibria on the boundary of ∆, as indicated in Table

4. The curve from (1
2
, 1) to (1

2
, 0) between regions ii and iii has equation 4θ2α3 + 12θ(1−

θ)α2 + (11θ2 − 20θ + 8)α = 4(1 − θ)2. The curve from (0, 1) to (1
2
, 0) separating region

v∪vi from region iii∪iv has equation θ = (1−2α)/(1−α)2. The curve from (1
2
, 1) to (1

3
, 0)

separating region iv ∪ v from region iii ∪ vi has equation θ = (1 − 3α)/{2(1 − α)2 − 1}.

These curves cross at (αc, θc), where αc =
1

2
(3−

√
5) ≈ 0.382 and θc =

1

2
(
√
5−1) ≈ 0.618.

The dots at (α, θ) = (0.38, 0.7) and (0.42, 0.7) correspond to Figure 2.

In Table 4, a second subscript b is used to identify an equilibrium on the horizontal

or base edge of the right-angled triangle ∆; a second subscript s is used to identify an

equilibrium on its vertical or side edge; and a second subscript r is used to identify an

equilibrium on its hypotenuse or roof edge. Table 4 excludes a saddle point at (0, 0)

and an unstable node at (0, 1), both of which always exist (and are regarded as vertex

equilibria, as opposed to edge equilibria). All other details, including the dashed curve

joining (0, 1) to 2(
√
5− 2), 0) ≈ (0.472, 0), are discussed in Appendix D.

(b) Regions in S corresponding to a (static) equilibrium in the interior of ∆, as indicated

in Table 5. The curve between regions IIa and IIb joins (α1,
1

2
) to (α2, 1) where α1 =√

2 − 1 ≈ 0.414 and α2 ≈ 0.628. The dots at (α, θ) = (0.6, 0.6), (0.43, 0.49) and (0.5, 0.8)

correspond to Figures 3 and 4. For further details, see Appendix D.
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(b) α = 0.42, θ = 0.7, ρ = 0, λ → ∞, k = 0

Figure 2: Phase-plane triangles ∆ corresponding to two different points in regions iii and iv of Figure 1(a).

Large dots denote equilibrium points, small dots points at which sample trajectories begin. (a) This phase-

plane triangle corresponds to the dot in region iv of Figure 1(a). There are 6 equilibrium points: saddle

points at (0, 0), (0, 0.1473) and (0.1212, 0), an unstable node at (0, 1), an unstable focus at (0.0644, 0.0644)

and a stable node at (1, 0). The vertex (1, 0) is the only local attractor and therefore also the global attractor:

the population evolves to a monomorphism of C (which in a biocontrol scenario would mean that the

invasive, more deadly, host was no longer attacked by resident parasitoids). Three sample trajectories are

shown, with initial points (0.01, 0.8), (0.01, 0.5) and (0.08, 0.03). (b) This phase-plane triangle corresponds

to the dot in region iii of Figure 1(a). There are now 7 equilibrium points: saddle points at (0, 0), (0, 0.2659)

(0.3779, 0) and (1, 0), an unstable node at (0, 1), an unstable focus at (0.1312, 0.1312) and a stable node at

(0.8005, 0). This base-edge equilibrium is the only local attractor and therefore also the global attractor: the

population evolves to a polymorphism of C and U (in a biocontrol scenario, some parasitoids would attack

the invasive host). Three sample trajectories are shown again; two initial points are the same, the third has

been changed from (0.225, 0.0875) to (0.01, 0.8). Separatrices are shown dashed. In both cases, a separatrix

joins the unstable focus to a base-edge saddle point and the side-edge saddle point to the global attractor,

although in (a) this separatrix is scarcely visible behind one of the trajectories.
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In general, as noted above, what we wish to know is the strategy mix to which the

population ultimately evolves as a function of prevailing ecological conditions, which

now depend only on α and θ. That is, ecological conditions are represented by the set of

all possible pairs of values of α and θ; it forms a square, which we term the parameter

square and denote by S. Thus, for any point (α, θ) inside the parameter square

S = {(α, θ)|0 ≤ α, θ ≤ 1} (15)

depicted in Figure 1 we wish to know the point or set of points in the phase-plane triangle

∆ defined by (13) to which the vector (x1(t), x2(t)) of proportions of C- and D- strategists

ultimately evolves. This final destination is typically a static equilibrium point, in which

case we may denote it by (x1(∞), x2(∞)); but for a small subregion of S the final destina-

tion is instead a dynamic equilibrium or limit cycle, as discussed below in §§3.5–3.7 and

Appendix D.

Equations (10)–(14) and (B.1)–(B.3) imply that the evolution of (x1(t), x2(t)) towards

its final destination is governed by

dx1

dt
= x1φ1(x1, x2),

dx2

dt
= x2φ2(x1, x2) (16)

with

φ1(x1, x2) = 1
2

{

(1− θ)x2
3 − (1− x1)

{

θ(α{1 + x1
2} − 1− ωLx1) + ωL

}

+ x2
2
{

α(1− θ)(x1 + 1)(1− ωL)− θ(1 + ωL)x1 + θ + ωL

}

+ x2

{

α(1− θ){(1− x1
2)ωL − 2} − θ(1 + ωLx1

2) + 1 + ωLx1

}

}

(17a)

and

φ2(x1, x2) = 1
2

{

α(1− x2)(1 + x1
2)− x1{x1(1 + x2) + 2x2

2}
}

+ (1− x1 − x2)
{

1
2
{α(1− x2)(1 + x1)− x1(1 + x2)}ωN − αθK(x1, x2, ωL)

− (1− θ)K(x2, x1, ωN)− (1− θ)(1 + x2)ωLx1

}

, (17b)

where we have defined

K(p, q, ω) = p2 + 1
2
(1 + p)(1− p− q + ωq) (17c)

for any size probability ω and proportions p, q. In view of (1), the right-hand sides of (16)

depend only on the proportions x1, x2 of strategies C,D and on the two dimensionless

parameters α and θ. The evolution of (x1(t), x2(t)) over the triangle ∆ in Figure 2 can now

12



be determined from (17) by standard methods of nonlinear analysis (e.g., Strogatz, 2014;

Layek, 2015), with the proportion of strategy U simultaneously determined from (12) as

x3(t) = 1 − x1(t) − x2(t). In describing this evolution, we refer to the horizontal edge of

the right-angled triangle ∆ (where x2 = 0) as its “base edge,” to its hypotenuse (where

x1 + x2 = 1) as its “roof edge” and to its vertical edge (where x1 = 0) as its “side edge.”

Correspondingly, we use subscripts b, r and s, respectively, to distinguish edge equilibria

(as in Table 4).

3.1. Size advantage has no evolutionary effect without U-strategists, CD cannot evolve

We begin our analysis of the reduced model with a partial digression to note that

size advantage, although decisive, would have no effect in the complete absence of U-

strategists because in that case all contests would occur between physical equals. Rather,

C would go to fixation when its fitness exceeded that of a D-strategist by twice or more,

thus completely offsetting the 50% chance of losing a contest, that is, when α < 1
2
; whereas

both strategies would persist when 1
2
< α < 1, with the proportion of D in the strategy

mix increasing from 0 to 1
2

as α increased from 1
2

to 1. This intuition is readily confirmed by

analysis (Appendix C, where an explicit expression is given for the proportions of C and

D when both persist). However, this no-U equilibrium, which occurs on the roof-edge of

∆ (where x1 + x2 = 1 and hence x3 = 0), fails to persist as soon as a single U-strategist

enters the population: in ∆ the equilibrium is an unstable saddle point, which can be

approached only from points already on the roof-edge itself. (This saddle point does not

appear in Figure 2 because the phase plane is sketched for α < 1
2

in both panels, but it

does appear in Figure 3(a) where α > 1
2
.) We conclude that a polymorphism of C and D

cannot evolve.

3.2. The three vertex equilibria: potential monomorphisms

We now proceed with a summary of the more general analysis, whose details are pre-

sented in appendices. Inspection of (17) reveals that all three vertices of ∆ are invariably

equilibrium points because φ1(1, 0) = φ2(0, 1) = 0; however, (0, 0) and (0, 1) are both un-

stable, (0, 0) being a saddle point and (0, 1) an unstable node (Appendix D). By contrast,

the type of (1, 0) depends on ecological conditions, that is, on where (α, θ) lies in the pa-

rameter square S: from Appendix D, it is an unstable node, a saddle point or a stable node

according to whether (α, θ) lies in region i, region ii∪ iii∪ vi or region iv∪ v of Figure 1(a).

These points are illustrated by Figure 2, where (1, 0) is a stable node in (a) but a saddle

point in (b), whereas (0, 0) is a saddle point and (0, 1) is an unstable focus in both panels.

We conclude that a monomorphism of D or of U cannot evolve, and that C can evolve

only for region iv ∪ v of Figure 1(a).
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(b) α = 0.43, θ = 0.49, ρ = 0, λ → ∞, k = 0

Figure 3: Phase-plane triangles ∆ corresponding to two different points in region IIa of Figure 2(b). Large

dots denote equilibrium points, small dots points at which sample trajectories begin. (a) This phase-plane

triangle corresponds to the dot in region IIa ∩ iii of 2(b), where an overbar denotes a set complement.

There are six equilibrium points: saddle points at (0, 0), (0, 0.4858) and (0.8417, 0.1583), unstable nodes

at (1, 0) and (0, 1) and a stable focus at (0.2869, 0.2869). Three sample trajectories are shown, with ini-

tial points (0.01, 0.8), (0.95, 0.03) and (0.225, 0.0875). Separatrices join the saddle points at (0, 0.4858) and

(0.8417, 0.1583) to the stable focus at (0.2869, 0.2869). Because this focus is the only local attractor, it is also

the global attractor: the population evolves to a polymorphism of all three strategies. (b) This phase-plane

triangle corresponds to the dot in region IIa ∩ iii of 2(b). There are seven equilibrium points: saddle points

at (0, 0), (0, 0.07099) (0.1084, 0) and (1, 0), an unstable node at (0, 1), a stable focus at (0.03994, 0.03994) and

a stable node at (0.5715, 0). Five sample trajectories are shown, with initial points (0.01, 0.8), (0.01, 0.5),

(0.25, 0.5), (0.065, 0.02) and (0.08, 0.03). To avoid clutter, no arrows were placed on the last two trajectories,

which converge to the stable focus and the stable node, respectively. A separatrix, shown dashed, joins the

unstable node at (0, 1) to the saddle point at (0.1084, 0). Because there are now two local attractors, there

is no longer a global attractor; rather, (x1(t), x2(t) converges to (0.03994, 0.03994) from points on the left of

the separatrix and to (0.5715, 0) from points on the right of it. That is, the population evolves to a poly-

morphism of all three strategies (but dominated by undiscerning U strategists, given that the proportions

of both C and D are low) or a monomorphism of C (parasitoids specializing on native hosts), according to

whether (x1(0), x2(0) lies on the left or the right of the separatrix.
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3.3. Equilibria on the base of ∆ where x2 = 0 (no D strategists): Potential CU polymorphism

From Appendix D, either one or two base-edge equilibria of the form (x±

1b, 0) with

0 < x±

1b < 1 will arise when (α, θ) lies in region iii ∪ iv ∪ vi of Figure 1(a). Region iv

corresponds to a base-edge saddle point; region vi corresponds to a base-edge stable node;

and region iii corresponds to two base-edge equilibria, a saddle point and a stable node.

We conclude that a polymorphism of C and U can evolve only for region iii ∪ vi of Figure

1(a).

3.4. Equilibria on the side of ∆ where x1 = 0 (no C strategists): Potential DU polymorphism

Again from Appendix D, a side-edge equilibrium of the form (0, x2s) with 0 < x2s < 1

arises when (α, θ) lies in region i ∪ ii ∪ iii ∪ iv of Figure 1(a); but it is always an unstable

saddle point. We conclude that a polymorphism of D and U cannot evolve for the reduced

model. Note, however, that this conclusion is predicated on ρ = 0 (no owner advantage)

and need not hold when ρ > 0; see §4.2.

3.5. Interior equilibrium on the line segment in ∆ where x1 = x2 (C, D equally numerous)

Finally, for all (α, θ) in the very same region of S, relabelled as region I ∪ II in Figure

1(b), an interior equilibrium invariably arises on the 45◦ open line segment

Λ = {(x1, x2)|0 < x1 = x2 <
1
2
} (18)

joining (0, 0) to (1
2
, 1
2
) in ∆. Whenever this equilibrium exists—that is, whenever (α, θ) lies

in region I ∪ II—we denote it by (p∗, p∗). It is always either a node or a focus; but it is an

attractor only for (α, θ) ∈ Ia ∪ IIa. For (α, θ) ∈ Ib ∪ IIb∩ iii ∪ iv there is a local attractor on

the boundary of ∆, which is also the global attractor; but for (α, θ) ∈ Ib ∪ IIb ∩ iii ∪ iv in

Figure 1(b), no static local attractor exists. In this region, (x1(t), x2(t) converges to a limit

cycle, as illustrated by Figure 4.

3.6. The unique global attractor

The strategy mix to which the population evolves as a function of α and θ (for ρ = 0,

λ → ∞ and k = 0) is depicted in Figure 5. For points (α, θ) in region A, (x1(t), x2(t)) is

attracted to the vertex (1, 0) in the bottom right-hand corner of the phase triangle ∆, so the

population evolves to a monomorphism of strategy C. For points in region B, (x1(t), x2(t))

is attracted to the base-edge of ∆: (x1(∞), x2(∞)) = (x+
1b, 0) where x+

1b is defined by (D.10),

a polymorphism of strategies C and U . Only for points (α, θ) in regions D or E is strategy

D guaranteed to persist. For (α, θ) in region D, (x1(t), x2(t)) is attracted to a stable node

or focus; whereas for (α, θ) in region E, the population evolves to a limit cycle instead.
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In either case, the population evolves to a (static or dynamic) polymorphism of all three

strategies. In the narrow transitional region C, the population evolves either to a static

polymorphism of all three strategies or to (x+
1b, 0), according to whether (x1(0), x2(0)) lies

to the left or the right of a separatrix joining the unstable node at (0, 1) to the saddle point

at (x−

1b, 0), as illustrated by Figure 3(b). See Appendix D for further details. In terms of

biocontrol scenarios, these results suggest that when invasive hosts are very unsuitable

for parasitoid development, parasitoids will evolve to avoid them, but if survival in the

more deadly host is approximately half as good as in the natural host, or better, then some

wasps will attack the invasive host.

Our analysis establishes that a unique global attractor exists for all (α, θ) ∈ S except

points lying in the narrow transitional region C in Figure 5. In this region, strategy D

persists only if the initial proportion of strategy C is very low (so that (x1(0), x2(0)) lies to

the left of the separatrix discussed in Appendix D). For all (α, θ) in region D∪E of Figure

5, however, strategy D is guaranteed to persist at some level, either as part of a static

polymorphism (region D) or as part of a periodic dynamic equilibrium or limit cycle that

surrounds an unstable equilibrium (region E). Because p∗ is the average value of x1(t) or

x2(t) over the period of any such limit cycle, p∗ is a suitable measure of the representation

of strategy D (or C) within a polymorphism of all three strategies, regardless of whether

strategy D persists statically or dynamically. We therefore refer to p∗ as the “strength” of

strategy D in such a polymorphism.

3.7. The limit-cycle region

Within region E, the further (α, θ) moves away from the boundary with region D and

into the region where the equilibrium at (p∗, p∗) is unstable, the greater the amplitude of

the limit cycle; thus its amplitude increases with θ and decreases with α. The nearer (α, θ)

moves to the boundary with region B, the more the limit cycle approaches the side edge

of ∆ where x1 = 0. It is thus possible that a stochastic perturbation to strategy C could

drive it to extinction but only at a point where the proportion of strategy D in the dynamic

polymorphism is high. Then (x1(t), x2(t) would move along x1 = 0 towards the saddle

point at (0, x2s); this is the only circumstance in which this equilibrium would become an

attractor. However, a single C mutant would shift (x1(t), x2(t) back onto the limit cycle.

So strategy D persists at strength p∗ for any (α, θ) in region D ∪ E, regardless of whether

its proportion in the strategy mix is fixed or changes with time. For any given value of θ,

within region D ∪ E, the least value of α is {
√
1− θ − 1 + θ}/θ; as α increases from that

value to 1, the strength of strategy D increases from 0 to 1
2
.

How likely is such a limit cycle to arise in practice? There are currently no empirical
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(a) α = 0.5, θ = 0.8, ρ = 0, λ → ∞, k = 0
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(b) α = 0.5, θ = 0.8, ρ = 0, λ → ∞, k = 5.×10-7

Figure 4: Examples of persistence of strategy D in a limit cycle. The phase-plane triangle ∆ is shown for

α = 0.5, θ = 0.8, ρ = 0, λ → ∞ and two values of k; as in Figures 2 and 3, large dots denote equilib-

rium points, small dots points at which sample trajectories begin. In both cases, there are five equilibrium

points: saddle points at (0, 0) and (0, x2s), an unstable node at (0, 1), an unstable focus at (p∗, p∗) and a

non-hyperbolic saddle-node equilibrium at (1, 0), as discussed in Appendix D. The closed curve is a limit

cycle surrounding the unstable focus at (p∗, p∗). Two sample trajectories of approach are shown, one start-

ing inside the limit cycle and one starting outside it; for simplicity of illustration, they are not sketched

all the way to convergence. Also shown dashed is the separatrix from the saddle point at (0, x2s) towards

the limit cycle. (a) Here k → 0. This phase-plane triangle ∆ corresponds to the point (α, θ) = (0.5, 0.8) in

region IIb ∩ iii ∩ iv of Figure 2(b); x2s = 0.5 and p∗ ≈ 0.2445. (b) Here k = 5 × 10−7; x2s ≈ 0.4698 and

p∗ ≈ 0.2303. In both cases, the limit cycle is a global attractor from inside ∆: the population evolves to a

dynamic equilibrium, a periodic polymorphism of all three strategies. In biocontrol scenarios this would

mean that both native and invasive hosts were attacked, but the relative attack rates would vary over time.

Further, a commonly observed behaviour would be that parasitoids attack both host types indiscriminatey.
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Figure 5: Strategy mix to which the population evolves as a function of α and θ for ρ = 0, λ → ∞ and

k = 0. For points (α, θ) in region A, the population evolves to a monomorphism of strategy C. For points

in region B, the population evolves to a polymorphism of strategies C and U . Only for points in region D

or region E is strategy D guaranteed to persist. For points in region D, the population evolves to a static

polymorphism; whereas for points in region E, the population evolves to a limit cycle instead. In either

case, the population evolves to a (static or dynamic) polymorphism of all three strategies. In the narrow

transitional region C, the population evolves either to CDU or CU , as described in §3.6. The dots in regions

A, B, C and E indicate the points for which the phase trajectories are plotted in Figures 2(a), 2(b), 3(b), and

4(a), respectively; in region D, the upper dot corresponds to Figure 3(a) and the lower dot to Figure 6(a).

The points (α∗, θ∗) ≈ (0.4302, 0.691) and (αw, θw) ≈ (0.4322, 0.6168) are, respectively, the point at which the

boundary between regions B and E has a vertical tangent and the lowest point of the wedge-shaped region

E; α∗ is not marked on the horizontal axis because it is too close to αw. See §3.6 and Appendix Dfor further

details. In terms of biocontrol scenarios, these results suggest that when invasive hosts are very unsuitable

for parasitoid development, parasitoids will evolve to avoid them, but if survival in the more deadly host is

approximately half as good as in the natural host, or better, then some wasps will attack the invasive host.
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data to address this question. Nevertheless, because it would require the point (α, θ) to

lie in region E of Figure 5, it would at least require θ to exceed 0.617 and α to lie between

0.432 and 0.628. In other words, our model predicts that a limit cycle can arise only at

high values of the proportion of more deadly hosts and intermediate values of the relative

reproductive (developmental) value.

3.8. The proportion of large individuals in a polymorphic population

We conclude this section by noting that the proportion of large individuals in a poly-

morphic population is always higher than the strength of strategy D because a U-strategist

is large with probability ωL. Let PL and PN denote the proportions of individuals in the

population who are large and normal, respectively. Then

PL = x2 + ωLx3, PN = x1 + ωNx3 (19)

where ωL and ωN are defined by (1), x3 is determined by (12) and PL + PN = 1. Thus, for

example, at the static polymorphism in Figure 3(a) where D persists at strength p∗ ≈ 0.287,

the proportion of individuals in the population who are large is p∗ + ωL(1− 2p∗) ≈ 0.489.

An important point for future empirical investigations is that an ESS may not itself be

directly observable (Mesterton-Gibbons, 2019, p. 360); and in this context, PL and PN are

observable, whereas p∗ is not.

4. Implications of owner advantage and other departures from the reduced model

In this section we relax some of the assumptions of the previous section by discussing

the effects of owner advantage (ρ 6= 0) and of reduced parasitoid density (a < ∞ or

k > 0) or size advantage (λ < ∞). Our results were obtained largely from numerical

exploration of the larger five-dimensional parameter space, although some analysis was

possible (Appendix E). Here we provide only a brief summary, especially for k and λ, so

that we can focus on the more important implications of increasing ρ.

4.1. Reduced parasitoid density (a < ∞ or k > 0) or size advantage (λ < ∞)

The effects of reducing parasitoid density and of reducing size advantage are similar.

In essence, for sufficiently large relative reproductive (developmental) value α, strategy

D of exploiting the deadlier host will persist at reduced parasitoid density as long as k

does not depart too greatly from its very small value in the reduced model, when ρ and

λ are unchanged; and again for sufficiently large α, strategy D will persist at reduced

size advantage as long as λ does not depart too greatly from its very large value in the

reduced model, when ρ and k are unchanged. Both of these results are strongly intuitive:
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size advantage in contests is less likely to be favoured if a contest is less likely in the first

place, or if it is less than certain to be decisive when a contest does arise. Either increasing

k or decreasing λ from its reduced-model value reduces the strength of strategy D in

the polymorphism that allows it to persist, and causes the interior equilibrium (p∗, p∗) to

drift down Λ towards the origin, where it eventually disappears (along with strategy D).

Significantly, however, in the absence of owner advantage (ρ = 0), whenever an interior

equilibrium exists, it always lies in Λ.

4.2. Owner advantage (ρ 6= 0)

By contrast, as soon as owner advantage is included (ρ 6= 0), the interior equilibrium

veers off Λ towards the side edge of ∆, so we must now instead denote it by (p∗, q∗), where

p∗ < q∗. The effect is illustrated by Figure 6: the first panel shows a reduced-model phase

triangle for a point (α, θ) in region D of Figure 5 with a lower value of θ than in Figure 3(a),

so that the global attractor is a stable node as opposed to a stable focus. Both strategy C

and strategy D have strength p∗ ≈ 0.113 in the corresponding polymorphism of all three

strategies. Steadily increasing the value of ρ from zero increases the strength of D in the

polymorphism, but decreases that of both C and U . The second panel shows the phase

plane at ρ = 0.2. The stable node has veered off Λ to (p∗, q∗) ≈ (0.0766, 0.211); and so the

strength of D has increased by almost 0.1, while that of C and that of U have decreased by

almost 0.04 and over 0.06, respectively. As ρ continues to increase, (p∗, q∗) moves steadily

towards the side-edge saddle point, which it absorbs at (p∗, q∗) ≈ (0, 0.279) for ρ ≈ 0.523.

For this and any higher value of ρ, the global attractor is a side-edge stable node, as

illustrated by the third panel of Figure 6 (the fourth panel is essentially unrelated to the

present discussion, being included to illustrate a point about the effect of k in Appendix

E). Strategy C has now been eliminated from the polymorphism, but D persists alongside

U , whose strength is lower than for ρ = 0 (although still much higher than that of D).

Figure 6 illustrates that owner advantage reinforces the effect of size advantage to

increase the strength of strategy D in a polymorphism where D would have persisted for

ρ = 0, because (α, θ) lies in region D of Figure 5. However, a more interesting question is

whether owner advantage can enable D to persist in region A of Figure 5, where D would

not persist for ρ = 0: the answer is yes. What happens in this case is that increasing

ρ induces the globally attracting stable node at (1, 0) to migrate leftward along x2 = 0

toward the origin, and then upward along the side edge. This effect is illustrated by

Figure 7 for α = 0.25 and θ = 0.5, so that (α, θ) lies in region A of Figure 5. In this

case, (x1(t), x2(t)) transitions away from (1, 0) and through the origin at ρ ≈ 0.25 and

ρ ≈ 0.467, respectively. In biocontrol scenarios, we would expect parasitoid species that
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�d) α = 0.5, θ = 0.3, ρ = 0.2, λ → ∞, k = 0.01

Figure 6: The effect of increasing owner advantage, ρ. These four phase-plane triangles ∆ correspond to

the lower point marked in region D of Figure 5 for different values of ρ. The line segment Λ defined by

(18) is shown dashed; as in Figures 2–4, large dots denote equilibrium points, small dots points at which

sample trajectories begin. In addition to the three vertex equilibria, there is a side-edge equilibrium in

each example, a roof-edge saddle point in in each example except (a), and an interior equilibrium in each

example except (c). In (a), (b) and (d), the interior equilibrium is a globally attracting stable node; in (c),

the global attractor has migrated to the side-edge; and in (a), (b) and (d), the side-edge equilibrium is a

saddle point. See §4.2 and Appendix E for further details. Overall, these results suggest that the presence

of ownership effects will reduce the proportion of parasitoids specializing on native hosts and favour those

specializing on the invasive host.
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have ownership effects as one of the factors determining contest outcomes to more readily

evolve to attack invasive hosts.

To appreciate how significantly owner advantage changes the overall picture, we need

only remember that in its absence a global attractor on the side edge of ∆ is impossible.

For ρ = 0, no (α, θ) in region v∪vi of Figure 1 ever corresponds to a side-edge equilibrium;

and when a side-edge equilibrium does exist (in region i ∪ ii ∪ iii ∪ iv), it is always an

unstable saddle point. By contrast, Figures 7 and 8 show that a point in region v of Figure

1 can correspond not only to a side-edge equilibrium, but also to a global attractor if ρ is

sufficiently large. In Figure 8, which illustrates the effect of varying α and ρ while holding

θ fixed, we have set θ = 1
2

(equal numbers of natural and more deadly hosts) to match

Figure 7. With θ fixed, different ecological conditions are represented by different values

of α and ρ. So all possible ecological conditions are represented by the set of all possible

pairs of values of α and ρ, that is, by the alternative parameter square

S̃ = {(α, ρ)|0 ≤ α, ρ ≤ 1}. (20)

If we think of S in Figure 5 as the horizontal base of a cube with ρ increasing vertically,

then S̃ corresponds to a vertical cross section through the centre of this cube in the plane

where θ = 1
2
.

The strategy mix to which the population evolves as a function of α and ρ for θ = 1
2

(with λ → ∞ and k = 0) is depicted in Figure 8. For points (α, ρ) in region 1 of S̃ in Figure

8, (x1(t), x2(t)) is attracted to vertex (1, 0) ∈ ∆ as t → ∞, so the population evolves to a

monomorphism of strategy C. For points in unshaded region 2, (x1(∞), x2(∞)) = (x+
1b, 0)

on the base edge of ∆, so the population evolves to a polymorphism of strategies C and

U . Only for points in region 3 or region 4 and outside transitional region 5 is strategy D

guaranteed to persist, within a polymorphism of either D and U or all three strategies, as

indicated in Figure 8. For points in region 3, (x1(∞), x2(∞)) = (0, x2s) on the side edge

of ∆, except in the intersection of regions 3 and 5, where (x1(∞), x2(∞)) = (0, x2s) only if

(x1(0), x2(0)) is very close to (0, x2s), and otherwise (x1(∞), x2(∞)) = (x+
1b, 0) as in the rest

of region 2. For points in region 4, (x1(∞), x2(∞)) = (p∗, q∗) in the interior of ∆, except in

the intersection of regions 4 and 5, where (x1(∞), x2(∞)) = (p∗, q∗) only if (x1(0), x2(0)) is

very close to (p∗, q∗), and otherwise (x1(∞), x2(∞)) = (x+
1b, 0) as in the rest of region 2. For

all other details, including the purpose of the smaller dots in region 5, see Appendix G.

4.3. The strength of D versus the proportion of large individuals

A very small value of α may require a very large value of ρ to ensure the persistence of

strategy D, and Figure 8 demonstrates its persistence for only a single value of θ. Never-

theless, it is shown in Appendix E that ρ can always be made sufficiently large to ensure
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that D persists, although if α is small, D may persist only if ρ is close to 1, and only at very

low strength. However, the strength of D is less important than the proportion of large

individuals, who may be either D-strategists or U-strategists; and although, for example,

the strength of D at the global attractor in Figure 7(c) is only q∗ ≈ 0.0729, from (19) the

proportion of large individuals in this polymorphism is q∗ + ωL(1− q∗) ≈ 0.258.

5. Discussion

Advancement of the understanding of animal contests has been possible through a

successful combination of well-integrated theoretical and experimental approaches (Briffa

& Hardy, 2013; Kokko, 2013; Sherratt & Mesterton-Gibbons, 2013). Game theory is not

only useful in predicting how general strategies evolve in order to maximize fitness, but

also flexible enough to adapt towards the specific biological features of a given species

of interest (Hammerstein & Riechert, 1988; Spencer & Broom, 2018; Wyse et al., 2017). To

date, limited attention has been given to the role played by anthropogenic disturbances,

yet these are increasingly frequent components of the environment of free-living organ-

isms as a result of globalization, leading to accidental introductions, and climate change

affecting species’ geographical ranges (Mooney & Hobbs, 2000).

We have used evolutionary game theory (Broom & Rychtář, 2013; Mesterton-Gibbons,

2019; Sigmund, 2010) to address the following question: can size advantage in contests

among parasitoid wasps sustain a preference for a more deadly host? The question is

currently constrained to have only a theoretical answer because relevant empirical ob-

servations are so preliminary, and hence we have used a reduced model with a low-

dimensional parameter space for clarity of prediction: our answer depends on only two

dimensionless parameters, namely, the ratio (α) of the reproductive (developmental) value

of a more deadly host to that of a natural host and the proportion (θ) of all hosts that are

of the more deadly variety. Because the left-hand boundary of region E in Figure 5 has its

vertical tangent at (α∗, θ∗), where α∗ ≈ 0.4302 and θ∗ ≈ 0.691, our reduced-model analysis

predicts that the answer is yes, but that D can persist only if the reproductive (develop-

mental) value of a more deadly host is at least 43% of the value of a natural one (though,

on the other hand, strategy D is also guaranteed to exist, even at low proportions of the

more deadly host, if the relative value is 50% or greater, because (α, θ) ∈ D ∪ E in Figure

5 for all α ≥ 1
2
). Current empirical estimates of survival by T. basalis in native (84%) and

invasive hosts (0–38%) (Cusumano et al., 2011; Rondoni et al., 2017; Balusu et al., 2019;

Peri et al., 2021) suggest that α may range between zero and circa. 45%: assuming no

host-species effects on the fecundity of emerging adults, this suggests that for this partic-

ular host-parasitoid association, inclusion of the invasive species in the range of attacked
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(b) α = 0.25, θ = 0.5, ρ = 0.4, λ → ∞, k = 0
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(d) α = 0.25, θ = 0.5, ρ = 0.8, λ → ∞, k = 0

Figure 7: The effect of increasing owner advantage, ρ, where its absence would eliminate stategy D. These

four phase-plane triangles ∆ correspondp to a point in region A of Figure 5 for different values of ρ. As

in Figures 2–4 and 6, large dots denote equilibrium points, small dots points at which sample trajectories

begin. In addition to the three vertex equilibria, there is a base-edge stable node in (b), and there are

both a roof-edge saddle point and a side-edge stable node in both (c) and (d). As ρ increases, the globally

attracting stable node migrates leftward along the base edge towards the origin, and then upward along

the side edge (to eliminate C). See §4.2 for further details. Overall, these results further suggest that the

presence of ownership effects will reduce the proportions of parasitoids specializing on native hosts and

favour those specializing on the invasive host.
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Figure 8: Strategy mix to which the population evolves as a function of α and ρ for θ = 1

2
, λ → ∞ and k = 0.

For points (α, ρ) in region 1, the population evolves to a monomorphism of strategy C. For points in un-

shaded region 2, the population evolves to a polymorphism of strategies C and U . Only for points in region

3 or region 4 and outside transitional region 5 is strategy D guaranteed to persist, within a polymorphism

of either D and U or all three strategies, as indicated. The larger dots at (0.25, 0.2), (0.25, 0.4), (0.25, 0.6)

and (0.25, 0.8) correspond to panels (a), (b), (c) and (d), respectively, in Figure 7; and moving along the base

of the above square from left to right corresponds to moving in the same direction along the central axis

θ = 1

2
of the square in Figure 5 For details of transitional region 5, including the purpose of the two smaller

dots, see §4.2 and Appendix G. For biocontrol scenarios these results suggest that parasitioids will not be

selected to remain specialists on their native hosts unless the invasive host species is very unsuitable for

development and the role of ownership asymmetries in determining contest outcomes is small.
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hosts will generally not be selected for. However, if there were positive fecundity effects

of emerging from the invasive host species or if parasitoids further evolve to develop bet-

ter in the invasive host (see below), then the value of α could be considerably increased,

making specialization on native hosts no longer the only strategy selected. Moreover, this

conclusion is based on a reduced-model analysis, for which owner advantage is absent,

whereas we have shown in §4.2that increased ownership advantage favours inclusion of

the invasive species in the range of attacked hosts by reducing the value of α for which

strategy D persists (again, see below).

The two-parameter model we have analysed in §3 is a special case of the more general

five-parameter model formulated in §2 (and Appendix A), obtained in the limit of no

owner advantage, extreme size advantage and high parasitoid density (for ρ = 0, λ → ∞
and k = 0). In principle, we could repeat our analysis for any other set of values of

the other three parameters (i.e., for ρ > 0, finite λ and k > 0), and for each such choice

we could thus obtain analogues of Figures 1–5. In practice, however, such efforts would

provide little added benefit, because in the absence of empirical data, no such values have

any greater significance than the limiting values we have already chosen.

Nevertheless, we have explored the more general five-dimensional parameter space

numerically, as described in §4, and in particular have investigated how owner advantage

can reinforce the advantage of size. Our analysis not only shows that a preference for the

more deadly host is most favoured when the asymmetries of size and ownership both

apply, but it also predicts that an obligate preference for the natural host cannot be elimi-

nated unless both asymmetries operate. This result is implicit in Figures 6 and 7 but is fur-

ther clarified by the analytical results presented in Appendix F. Because owner advantage

substantially reduces the value of α at which a preference for the more deadly host can

persist, it seems that size advantage in contests is unlikely by itself to sustain a preference

for Halyomorpha halys among Trissolcus basalis, but that such a preference could be main-

tained by the simultaneous operation of both size advantage and ownership advantage

(as is observed in some of the species of parasitoids in which contests have been studied,

Hardy et al., 2013). However, the issue remains very much an open question because em-

pirical studies are at such a preliminary stage, even though some aspects of patch defence

and contest behaviour in T. basalis have been previously investigated with regard to its

role as a parasitoid of the pentatomid bug Agonoscelis rutila (Fabricious) (Field & Calbert,

1998; Field, 1998; Field et al., 1998; Field & Calbert, 1999). Large asymmetries in wasps’

contestant abilities were not explored (contestant size was relatively invariant), and this

body of work indicated that the main factor influencing contest outcome is prior own-

ership, closely fitting the Bourgeois strategy that was explored by classic game-theoretic
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models during the early development of general theory for contests (Maynard Smith,

1982): i.e., females that arrive first on the patch almost always win against subsequent in-

truders (Field et al., 1998). The larger size asymmetries likely generated by development

in one of several host species may, however, lead to additional and perhaps stronger ef-

fects of contest ability (as found for the egg parasitoid Telenomus podisi, Guerra-Grenier

et al., 2020).

The oviposition into invasive hosts by indigenous parasitoids would be expected to

select for an enhanced ability to survive development in those hosts and thus an evo-

lutionary change in α, the relative reproductive (developmental) value of the unnatural

host (Berthon, 2015; Konopka et al., 2018; Robertson & Blumstein, 2019; Kruitwagen et al.,

2021), as has been analagously observed in Australian native snakes that are evolving

long-term adaptations (including higher resistance to toxin) in order to consume invasive

and toxic tadpoles (Shine & Wiens, 2010) and the beak length in the soap berry bug Jadera

haematoloma (Hemiptera: Rhopalidae) evolving in response to fruit size of plant species

introduced to North America (Carroll & Boyd, 1992; Cenzer, 2017). Hence, it is possible

that the contest biology of T. basalis will act in concert with adaptations to developing in

a novel host species to promote a more stable association with the Brown Marmorated

Stink Bug, ultimately facilitating escape from what has been seen as the evolutionary

trap (Schlaepfer et al., 2002, 2005; Abram et al., 2014). The invasive Brown Marmorated

Stink Bug is a major agricultural pest in Europe and in north America where the biologi-

cal control currently provided by resident egg parasitoids, such as T. basalis, is generally

considered insufficient to reduce the pest population density below economic thresholds

(Rice et al., 2014; Leskey & Nielsen, 2018). An enhanced ability of resident natural ene-

mies to survive development in this pest may indicate that, over generations, the value

of native egg parasitoids in biological control could increase.

With regard to size-advantage effects that could lead to evolutionary-trap escape, we

have assumed that T. basalis parasitoids that successfully develop from H. halys eggs gain

positive fitness-related benefits. It is well known that size is often a good proxy for fitness;

see, for example, Roitberg et al. (2001), Boivin (2010) and Cusumano et al. (2016). Because

there is a direct link between foraging capacities and fitness in parasitoid wasps, larger

individuals could possess higher host-searching capacities or higher attack rates and thus

be more efficient in suppressing the pest population of native and invasive stink bug

hosts.

Finally, we must keep in mind that well designed models are, of necessity, deliberate

simplifications of reality. As Maynard Smith noted, “all good models in science leave

out a lot. A model which included everything would be too complicated to analyze”
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(Maynard Smith, 1972, p. 21). As Field et al. (1997) noted, in T. basalis there is a pay-off

due to superparasitism and the offspring of a superparasitizing female can survive at

relatively high rates. Field et al. (1997) argued that such advantages were mainly due

to adjustment in the sex ratio (males develop faster than females and might thus have

an advantage in competition). As noted in §2, however, to incorporate this effect in our

model would have defeated its purpose by adding too much complexity.

In conclusion, our model has explored the combined survival disadvantages of de-

veloping in unnatural hosts with the size-related competitive advantages experienced

by survivors. The fact that surviving individuals are large can be sufficient to alleviate

the risk of developmental mortality and thus enhanced body size provides one means

of potential escape from the evolutionary trap set by the presence of a novel and devel-

opmentally unsuitable host. While our model was constructed with particular regard to

current interactions between invasive stinkbugs and their native natural enemies, it has

wider applicability. For instance, an analogous situation exists in Pacific salmon in which

larger and more directly competitive males at spawning grounds have also had to sur-

vive greater mortality risks whilst at sea than smaller males that did not migrate from

their natal rivers (Gross, 1985; Hammerstein et al., 2006). Here again, both developmen-

tal mortality and the competitive ability of survivors play key roles in understanding the

selective values of the alternatives and that the observed ecological scenario is influenced

by anthropogenically induced change (Gross, 1991).
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Appendix A. Fitness calculation

We begin by computing a focal C-strategist’s expected number of offspring from a

suitable host, conditional on discovery at time T ; for a C-strategist, suitable host means

natural host. We denote this conditional payoff by wC(T ).
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The host is either guarded or unguarded. Thus wC(T ) is a sum of two contributions,

the first conditioned on the host being guarded and the second conditioned on the host

being unguarded. Let these contributions be wCg(T ) and wCu(T ), respectively. That is,

wC(T ) = wCg(T ) + wCu(T ). (A.1)

We deal with each contribution in turn.

If the host is guarded, then the host has already been discovered by another indi-

vidual, which happens with probability Z(T ), defined by (7); the focal C-strategist is

an intruder; and the owner is either another C-strategist or a U-strategist, because a D-

strategist that discovers a natural host does not guard it. So, conditional on the host being

guarded, the focal individual will have fitness 1 if either the owner is another C-strategist

and the focal animal wins against the other C-strategist or the owner is a U-strategist and

the focal animal wins against the U-strategist; otherwise, the fitness is zero. The proba-

bility of winning as an intruder against another C-strategist is qI , defined by (3), because

both individuals have the same size. The probability of winning as an intruder against

a U-strategist depends on whether it is larger or of equal size. The owner is larger if it

emerged from a more deadly host, which happens with probability ωL, defined by (1),

and then the intruding C-strategist wins with only the reduced probability qIN , defined

by (4); whereas if the U-strategist emerged from a natural host, which happens with prob-

ability ωN , then the focal individual’s probability of victory is qI , as before. The owner is a

C-strategist with probability x1 and a U-strategist with probability x3. Thus, conditional

on the host being guarded at time T , the probability that the focal individual succeeds in

acquiring it is qI · x1 + (ωL · qIN + ωN · qI) · x3, implying

wCg(T ) = 1 · Z(T ) · {qI · x1 + (ωL · qIN + ωN · qI) · x3}. (A.2)

If the host is unguarded, then the focal C-strategist becomes its owner. The host is un-

guarded if either it has been discovered by time T and the first discoverer is a D-strategist

or the host has not been discovered by time T , that is, with probability Z(T )·x2+1−Z(T ).

With (conditional) probability 1− Y (T ), where Y (T ) is defined by (7), the host is not sub-

sequently discovered, the protagonist remains the owner and its payoff is therefore 1.

With probability Y (T ), however, the C-strategist is subsequently intruded upon. Condi-

tional thereon, with probability x2 the intruder is a D-strategist and the focal C-strategist

remains the owner (with fitness 1), because the host is a natural one. But a contest ensues

if the intruder is either a C- or a U-strategist. If the intruder is a C-strategist and hence

has the same size, which happens with probability x1, then the focal C-strategist wins

the contest with probability qO; whereas if the intruder is a U-strategist, which happens
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with probability x3, then the focal C-strategist wins the contest with probability qO if the

intruder is normal or with probability qON if the intruder is large, that is, with proba-

bility qO · ωN + qON · ωL. That is, the focal individual wins the contest with probability

qO · x1 + (qO · ωN + qON · ωL)x3. Thus

wCu(T ) = {Z(T ) · x2 + 1− Z(T )} ·
{

{1− Y (T )} · 1 +

Y (T ){x1 · qO + x2 · 1 + x3(ωL · qON + ωN · qO)}
}

, (A.3)

and the payoff from a host located at time T is

wC(T ) = k + {x1 · qI + x3(ωL · qIN + ωN · qI)}Z(T ) + x2Z(T ){1− Y (T )} +

+ {x1 · qO + x2 + x3(ωL · qON + ωN · qO)}
{

x2Z(T )Y (T ) + {1− Z(T )}Y (T )
}

(A.4)

on using (A.1)–(A.3) and (6). But T is a random variable, and so we compute the expected

value of wC(T ) over the distribution of T to obtain the fitness W1 to a C-strategist:

W1 = E [wC(T )]

= k + {x1 · qI + x3(ωL · qIN + ωN · qI)}E [Z(T )] + x2 E [Z(T ){1− Y (T )}] +
{x1 · qO + x2 + x3(ωL · qON + ωN · qO)}

{

x2E [Z(T )Y (T )] + E [{1− Z(T )}Y (T )]
}

(A.5)

from (A.4), where E denotes expected value. But from (7) and (9) we obtain

E [Z(T )] = 1− γ

E [Y (T )] =
p

∫
0

1

p
Y (t) dt = 1 +

1− k

ln(k)
= 1− γ

E [Z(T ){1− Y (T}] =
p

∫
0

1

p
Z(t){1− Y (t} dt =

k − 1

ln(k)
− k = γ − k

E [{1− Z(T}Y (T )] =
p

∫
0

1

p
Y (t){1− Z(t} dt =

k − 1

ln(k)
− k = γ − k

E [Z(T ) Y (T}] =
p

∫
0

1

p
Z(t) Y (t) dt = 1 + k +

2(1− k)

ln(k)
= 1− 2γ + k.

(A.6)

Note that 0 < k < 1 ensures 0 < k < γ < 1
2
(1 + k) < 1 with

lim
k→0

γ = 0, lim
k→1

γ = 1 (A.7)

so that all expressions in (A.6) are positive. Substituting from (A.6) into (A.5), the fitness

to a C-strategist is given by

W1 = k + {x1 · qI + x3(ωL · qIN + ωN · qI)}(1− γ) + x2 (γ − k) +

{x1 · qO + x2 + x3(ωL · qON + ωN · qO)}
{

x2(1− 2γ + k) + (γ − k)
}

,
(A.8)
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which is a function of the strategy proportions and five dimensionless parameters, namely,

α, θ, λ, ρ and k.

Next we compute a focal D-strategist’s expected number of offspring from a suitable

host, conditional on discovery at time T ; for a D-strategist, suitable host means a more

deadly host yielding fitness α. We denote this conditional payoff by wD(T ). With proba-

bility Z(T ), the host has already been discovered by another individual. With probability

x1, the first discoverer is a C-strategist, and so the host is unguarded. With probability

x2, the first discoverer is another D-strategist. In that case, there ensues a contest between

equals, which the intruding D-strategist wins with probability qI , defined by (3). With

probability x3, the first discoverer is a U-strategist. It is large if it emerged from a more

deadly host, which happens with probability ωL, defined by (1), and then the intruding

D-strategist again wins with probability qI ; whereas if the first discoverer emerged from

a natural host, which happens with probability ωN , then the intruding D-strategist wins

with the larger probability qIL defined by (5).

From above, the probability that the host is guarded at time T is Z(T ) · (x2 + x3).

The host is unguarded if either the first discoverer is a C-strategist or the host has not

been discovered by time T , that is, with probability Z(T ) · x1 + 1 − Z(T ). In that case,

the focal D-strategist becomes the owner. With (conditional) probability 1 − Y (T ), the

host is not subsequently discovered, the protagonist remains the owner, and its payoff is

therefore α. With probability Y (T ), however, the D-strategist is subsequently intruded

upon. Conditional thereon, with probability x1 the intruder is a C-strategist and the focal

D-strategist remains the owner, because the host is not a natural one. But a contest ensues

if the intruder is either a D- or a U-strategist. The focal D-strategist wins this contest

with probability qO if the intruder is large, which happens if the intruder is a D strategist

or with probability ωL if the intruder is a U-strategist, and with probability qON if the

intruder is normal, which happens with probility ωN if the intruder is a U-strategist. Thus

the payoff from a host located at time T is

wD(T ) = Z(T ) ·
{

x2 · qI + x3(ωL · qI + ωN · qIL)
}

α +

{Z(T ) · x1 + 1− Z(T )} ·
{

{1− Y (T )} · 1 +

Y (T ){x1 · 1 + x2 · qO + x3(ωL · qO + ωN · qOL)}
}

α, (A.9)

implying

wD(T ) =
(

k + {x2 · qI + x3(ωL · qI + ωN · qIL)}Z(T ) + x1Z(T ){1− Y (T )} +

+ {x1 + x2 · qO + x3(ωL · qO + ωN · qOL)}
{

x1Z(T )Y (T ) + {1− Z(T )}Y (T )
}

)

α (A.10)

36



on using (6). But T is a random variable, and so we compute the expected value of wC(T )

over the distribution of T to obtain the fitness W2 to a D-strategist; on using (A.6), we

obtain

W2 = E [wD(T )]

=
(

k + {x2 · qI + x3(ωL · qI + ωN · qIL)}(1− γ) + x1(γ − k) +

+ {x1 + x2 · qO + x3(ωL · qO + ωN · qOL)}
{

x1(1− 2γ + k) + (γ − k)
}

)

α,

(A.11)

which is again a function of the strategy proportions and five dimensionless parameters,

namely, α, θ, λ, ρ and k.

Lastly we compute a focal U-strategist’s expected number of offspring from a suitable

host, conditional on discovery at time T ; for a U-strategist, a suitable host means any host.

We denote this conditional payoff by wU(T ). We first compute a focal U-strategist’s ex-

pected number of offspring from a more deadly host, calling this payoff wUL(T ); then we

compute a focal U-strategist’s expected number of offspring from a natural host, calling

this payoff wUN(T ). Then because more deadly and natural hosts are found in proportions

θ and 1− θ, respectively, we compute wU(T ) as

wU(T ) = θ wUL(T ) + (1− θ)wUN(T ). (A.12)

So we first assume that the suitable host is more deadly host. With probability Z(T ),

this host has already been discovered by another individual. With probability x1, the first

discoverer is a C-strategist, and so the host is unguarded. With probability x2, the first

discoverer is a D-strategist. In that case, there ensues a contest, which the intruding U-

strategist wins with probability qI if large and qIN if normal. With probability x3, the first

discoverer is a U-strategist, and the intruding U-strategist wins the ensuing contest with

probability ωL·qI+ωN ·qIN if the first discoverer is large but with probability ωL·qIL+ωN ·qI
if the first discoverer is normal; that is, the intruding U-strategist wins with probability

qA = ωL · (ωLqI + ωNqIN ) + ωN · (ωLqIL + ωNqI)

= qI{ωL
2 + ωN

2}+ {qIL + qIN}ωLωN .
(A.13)

From above, the probability that the more deadly host is guarded at time T is Z(T ) ·
(x2 + x3). The host is unguarded if either the first discoverer is a C-strategist or the host

has not been discovered by time T , that is, with probability Z(T ) · x1 + 1 − Z(T ). In that

case, the focal U-strategist becomes the owner. With (conditional) probability 1 − Y (T ),

the host is not subsequently discovered, the protagonist remains the owner, and its payoff

is therefore α. With probability Y (T ), however, the U-strategist is subsequently intruded
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upon. Conditional thereon, with probability x1 the intruder is a C-strategist and the focal

U-strategist remains the owner, because the host is not a natural one. But a contest ensues

if the intruder is either a D- or a U-strategist. If the intruder is a D-strategist, then the

focal U-strategist wins with probability qO if large and qON if normal, i.e., with probability

ωL · qO + ωN · qON . If the intruder is a U-strategist, then by analogy with (A.13), the focal

U-strategist wins the contest with probability

qB = ωL · (ωLqO + ωNqOL) + ωN · (ωLqON + ωNqO)

= qO{ωL
2 + ωN

2}+ {qOL + qON}ωLωN .
(A.14)

Thus the payoff from a more deadly host located at time T is

wUL(T ) = Z(T ) ·
{

x2 · (ωL · qI + ωN · qIN) + x3 · qA
}

α +

{Z(T ) · x1 + 1− Z(T )} ·
{

{1− Y (T )} · 1 +

Y (T ){x1 + x2(ωLqO + ωNqON) + x3qB}
}

α (A.15)

where qA and qB are defined by (A.13) and (A.14), respectively, implying

wUL(T ) =
(

k + {x2 · (ωL · qI + ωN · qIN) + x3 · qA}Z(T ) + x1Z(T ){1− Y (T )} +

+ {x1 + x2(ωLqO + ωNqON) + x3qB}
{

x1Z(T )Y (T ) + {1− Z(T )}Y (T )
}

)

α (A.16)

on using (6).

We now assume that the suitable host is a natural host. With probability Z(T ), this

host has already been discovered by another individual. With probability x1, the first

discoverer is a C-strategist. In that case, there ensues a contest, which the intruding U-

strategist wins with probability qIL if large and qI if normal, that is, with probability ωL ·
qIL + ωN · qI . With probability x2, the first discoverer is a D-strategist, and so the host

is unguarded. With probability x3, the first discoverer is another U-strategist, and the

intruding U-strategist wins the ensuing contest with probability ωL · qI + ωN · qIN if the

first discoverer is large but with probability ωL ·qIL+ωN ·qI if the first discoverer is normal;

that is, the intruding U-strategist wins with probability qA defined by (A.13).

From above, the probability that the natural host is guarded at time T is Z(T )·(x1+x3).

The host is unguarded if either the first discoverer is a D-strategist or the host has not

been discovered by time T , that is, with probability Z(T ) · x2 + 1 − Z(T ). Then the focal

U-strategist becomes the owner. With (conditional) probability 1 − Y (T ), the host is not

subsequently discovered, the protagonist remains the owner, and its payoff is therefore 1.

With probability Y (T ), however, the U-strategist is subsequently intruded upon. Condi-

tional thereon, with probability x2 the intruder is a D-strategist and the focal U-strategist
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remains the owner, because the host is not a stink bug. But a contest ensues if the intruder

is either a C- or a U-strategist. If the intruder is a C-strategist, then the focal U-strategist

wins with probability qOL if large and qO if normal, i.e., with probability ωL · qOL+ωN · qO.

If the intruder is a U-strategist, then by analogy with (A.14), the focal U-strategist wins

the contest with probability qB. Thus the payoff from a natural host located at time T is

wUN(T ) = Z(T ) ·
{

x1 · (ωL · qIL + ωN · qI) + x3 · qA
}

+

{Z(T ) · x2 + 1− Z(T )} ·
{

{1− Y (T )} · 1 +

Y (T ){x1(ωL · qOL + ωN · qO) + x2 + x3qB}
}

(A.17)

where qA and qB are defined by (A.13) and (A.14), respectively, implying

wUN(T ) =
(

k + {x1 · (ωL · qIL + ωN · qI) + x3 · qA}Z(T ) + x2Z(T ){1− Y (T )} +

+ {x1(ωL · qOL + ωN · qO) + x2 + x3qB}
{

x2Z(T )Y (T ) + {1− Z(T )}Y (T )
}

)

(A.18)

on using (6). Substitution from (A.16) and (A.18) into (A.12) now yields W3(T ). But T is

a random variable, and so we compute the expected value of wU(T ) over the distribution

of T to obtain the fitness W3 to a D-strategist; on using (A.6), we obtain

W3 = E [wU(T )] = θ E [wUL(T )] + (1− θ)E [wUN(T )]

= θ
(

k + {x2 · (ωL · qI + ωN · qIN) + x3 · qA}(1− γ) + x1(γ − k) +

{x1 + x2(ωLqO + ωNqON) + x3qB}
{

x1(1− 2γ + k) + γ − k
}

)

α +

(1− θ)
(

k + {x1 · (ωL · qIL + ωN · qI) + x3 · qA}(1− γ) + x2(γ − k) +

{x1(ωL · qOL + ωN · qO) + x2 + x3qB}
{

x2(1− 2γ + k) + γ − k
}

)

(A.19)

which is again a function of the strategy proportions and five dimensionless parameters,

namely, α, θ, λ, ρ and k.

Appendix B. Fitnesses in the limit as a → ∞

The expressions for the fitnesses simplify greatly in the limit as a → ∞ and hence

k → 0 in (8), so that also γ → 0 by (9). From (A.8), (A.11) and (A.19), we obtain

W1 = x1 · qI + x3(ωL · qIN + ωN · qI) + {x1 · qO + x2 + x3(ωL · qON + ωN · qO)}x2, (B.1)

W2 =
(

x2 · qI + x3(ωL · qI + ωN · qIL) + {x1 + x2 · qO + x3(ωL · qO + ωN · qOL)}x1

)

α (B.2)
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and

W3 = θ
(

x2 · (ωL · qI + ωN · qIN) + x3 · qA +

{x1 + x2(ωLqO + ωNqON) + x3qB}x1

)

α +

(1− θ)
(

x1 · (ωL · qIL + ωN · qI) + x3 · qA +

{x1(ωL · qOL + ωN · qO) + x2 + x3qB}x2

)

.

(B.3)

When (14) holds, these expressions further reduce to

W1 =
1
2
(1 + x2)(x1 + ωNx3) + x2

2 (B.4)

W2 =
(

1
2
(1 + x1)(x2 + {1 + ωN}x3) + x1

2
)

α (B.5)

and

W3 = θ
(

1
2
(1 + x1)(x3 + ωLx2) + x1

2
)

α +

(1− θ)
(

1
2
(1 + x2)(x3 + {1 + ωL}x1) + x2

2
)

(B.6)

because ωL + ωN = 1 by (1), and so (14) implies qA = qB = 1
2
(ωL + ωN)

2 = 1
2

by (A.13) and

(A.14).

Appendix C. The strategy mix without U -strategists for k → ∞, ρ = 0, λ → ∞

When x3 = 0, the third equation in (10) becomes an identity; the second becomes

superfluous, because x2 = 1 − x1 by (12); and because W1 − W = 1 · W1 − W = (x1 +

x2)W1 − {x1W1 + x2W2} = x2(W1 −W2), when (14) holds the first equation reduces to

dx1

dt
= 1

2
x1x2{(1− x1)

2 − α(1 + x1
2) + 1}. (C.1)

If α < 1
2
, then the term in squiggly brackets is strictly positive, implying x1 → 1, x2 → 0

as t → ∞. If 1
2
< α < 1, however, it becomes negative for 1

2
< x1r < x1 < 1, implying

x1 → x1r, x2 → x2r as t → ∞ where x1r = 1− x2r and

x2r =

√

α− (1− α)2 − α

1− α
(C.2)

(which increases from 0 to 1
2

as α increases from 1
2

towards 1). We note in passing that
1
2
< x2r < 1 for 1 < α < 2 and D goes to fixation for α > 2 because the term in squiggly

brackets in (C.1) becomes strictly negative—in perfect accord with intuition, but also irrel-

evant, because α < 1 is an assumption of our analysis. The equilibrium (x1r, x2r) remains

an equilibrium when U is introduced to the strategy mix but is no longer an attractor: it

becomes an unstable saddle point on the roof-edge of ∆, as illustrated by Figure 3(b).
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Appendix D. Phase-plane analysis for k = 0, ρ = 0, λ → ∞

The phase plane is analyzed by standard techniques of nonlinear analysis (e.g., Stro-

gatz, 2014; Layek, 2015). In particular, the equilibrium points are classified as described

by Mesterton-Gibbons (2019, p. 93). In general, if (x̃1, x̃2) is an equilibrium point of the

dynamical system
dx1

dt
= G1(x1, x2),

dx2

dt
= G2(x1, x2), (D.1)

that is if G1(x̃1, x̃2) = 0 = G2(x̃1, x̃2), then its type is determined by the eigenvalues of

the Jacobian matrix J(x̃1, x̃2) having gij(x̃1, x̃2) = ∂Gi/∂xj |x1=x̃1,x2=x̃2
in row i and column

j, and hence by the roots—termed r1(x̃1, x̃2) and r2(x̃1, x̃2)—of its characteristic equation

r2 − {g11(x̃1, x̃2) + g22(x̃1, x̃2)}r + g11(x̃1, x̃2)g22(x̃1, x̃2) − g12(x̃1, x̃2)g21(x̃1, x̃2) = 0. Those

roots are real whenever the discriminant

δCE(x̃1, x̃2) = (g11(x̃1, x̃2)− g22{x̃1, x̃2)}2 + 4g12(x̃1, x̃2)g21(x̃1, x̃2) (D.2)

of the characteristic equation is positive, and in particular when g12(x̃1, x̃2) and g21(x̃1, x̃2)

have the same sign (or at least one of them is zero, as at all three vertices of the phase

triangle ∆). The equilibrium is stable if both roots have a negative real part, and otherwise

it is unstable. For real roots, (x̃1, x̃2) is a stable node, an unstable node or a saddle point

according to whether the eigenvalues are both negative, both positive or have opposite

signs; and for complex conjugate roots, (x̃1, x̃2) is an unstable or stable focus, according

to whether the eigenvalues have a positive or negative real part. We note in passing that

these classification criteria do not apply to non-hyperbolic equilibrium points at which

the real part of an eigenvalue is zero, but they suffice for our purposes because we make

the generic payoffs assumption (Broom & Rychtář, 2013, p. 21; Mesterton-Gibbons, 2019,

p. 13), and non-hyperbolic equilibria are non-generic.

We now proceed with identifying all equilibria. It is clear from inspection of (16)

that (0, 0), (1, 0) and (0, 1) are all equilibrium points because φ1(1, 0) = φ2(0, 1) = 0. On

setting G1(x1, x2) = x1φ1(x1, x2) and G2(x1, x2) = x2φ2(x1, x2) in (D.1), we find that the

eigenvalues at (0, 0) are

r1(0, 0) = −1

2
ωNσ0b(α, θ), r2(0, 0) =

1

2α
ωL σ0b(α, θ) (D.3)

where σ0b is defined by (D.8) below. Because they have opposite signs, (0, 0) is invariably

a saddle point. Similarly, the eigenvalues at (0, 1) are

r1(0, 1) = 1
2
(2− α), r2(0, 1) = 1

2
(1− θ){(1− α)ωL + (2− α)ωN}. (D.4)
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Both are positive, hence (0, 1) is invariably an unstable node. The eigenvalues at (1, 0) are

r1(1, 0) = −1
2
(1− 2α), r2(1, 0) = − 1

2α
ωL σ1b(α, θ). (D.5)

The first eigenvalue is negative for α < 1
2

and positive for α > 1
2
. The second eigenvalue

is negative to the left of the curve separating region iv ∪ v from region i ∪ ii ∪ iii ∪ vi in

Figure 1, and r2 > 0 to the right of this curve. Thus (1, 0) is a stable node when (α, θ) lies

in region iv ∪ v, a saddle point when (α, θ) lies in region ii ∪ iii ∪ vi and an unstable node

when (α, θ) lies in region i. We note in passing that (1, 0) is non-hyperbolic where σ1b = 0

or α = 1
2
; these points form a set of measure zero, and hence are non-generic. Such a non-

hyperbolic equilibrium is exemplified by (1, 0) in Figure 4, for which nonlinear terms in

the Taylor expansion of (16) about this point can be used to classify it as a saddle-node

equilibrium (Layek, 2015); however, trajectories in its vicinity still resemble those near a

saddle point, as Figure 4 illustrates.

A roof-edge equilibrium (x1r, x2r) on the hypotenuse of ∆ has already been identified

in Appendix C; it exists as long as 1
2
< α < 1, that is, when (α, θ) lies in region i of

Figure 1, as illustrated by Figure 3(b). Because r1(x1r, x2r) and r2(x1r, x2r) are the roots

of a quadratic equation, explicit expressions for them, their product r1(x1r, x2r)r2(x1r, x2r)

and the discriminant δCE(x1r, x2r) are easily determined. They are continuous functions

of α and θ, but they are too cumbersome for useful analysis. A much more efficient

way to determine their signs inside a region is to use constrained numerical optimization

(e.g., Bertsekas, 2016; Aragón et al., 2019), for which powerful and reliable mathematical

packages are now widely available. If a discriminant δCE(x̃1, x̃2) has a minimum of zero

over some region, then the associated eigenvalues must be real on that region. If, further,

the eigenvalue product r1(x̃1, x̃2)r2(x̃1, x̃2) has a maximum of 0 on the boundary of the

region, then it must be negative inside the region, and so (x̃1, x̃2) must be a saddle point;

whereas if both the product r1(x̃1, x̃2)r2(x̃1, x̃2) has a minimum of zero on the boundary

and the sum r1(x̃1, x̃2)+ r2(x̃1, x̃2) has either a maximum of zero or a minimum of zero on

the boundary, then (x̃1, x̃2) must be either a stable or an unstable node, respectively. The

requisite properties can all be readily established by numerical optimization.

In the case of (x1r, x2r), over region i in Figure 1 we find that δCE(x1r, x2r) has a min-

imum of 0 at both (1
2
, 0) and (1

2
, 1); and that r1(x1r, x2r)r2(x1r, x2r) has a maximum of 0,

which occurs all the way around the boundary for θ = 0, α → 1, θ = 1 and α = 1
2
. For

all (α, θ) satisfying 1
2
< α < 1, 0 < θ < 1, therefore, r1(x1r, x2r)r2(x1r, x2r) < 0. Hence

(x1r, x2r) is invariably a saddle point, the boundary of region I being excluded by (2).

Let us now turn our attention to the possibility of equilibria on the base edge of ∆

where 0 < x1 < 1, x2 = 0 or on the side edge where x1 = 0, 0 < x2 < 1. From (16) we find
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that

φ1(x1, 0) = (1− x1)Q1(x1), φ2(0, x2) = (1− x2)Q2(x2) (D.6)

where Q1 and Q2 are quadratic polynomials defined by

Q1(x1) = 1
2

{

θ{1− α(1 + x1
2) + ωLx1} − ωL

}

Q2(x2) = 1
2

{

(2− θ − ωL)α− (1− θ){1 + x2
2 + (1− ωL)αx2}

}

(D.7)

with ωL defined by (1). A base-edge equilibrium occurs where Q1(x1) = 0, and a side-edge

equilibrium occurs where Q2(x2) = 0. We deal with base-edge equilibria first.

In that regard, the signs of Q1(0) and Q1(1) are determined by σ0b and σ1b, respectively,

where we define

σ0b(α, θ) = (1− θ)(1− 2α)− α2θ, σ1b(α, θ) = 2αθ(2− α)− 3α− θ + 1. (D.8)

The quadratic equation Q1(x1) = 0 has two real roots whenever the discriminant δ1b is

positive, where we define

δb(α, θ) = α2θ4 + 4αθ2(1− θ + αθ)σ0b(α, θ). (D.9)

In Figure 1, σ0b is positive in region v ∪ vi and negative in region i ∪ ii ∪ iii ∪ iv, whereas

σ1b is positive in region iv ∪ v and negative in region i ∪ ii ∪ iii ∪ vi; and δb is positive in

region iii∪ iv∪ v∪ vi but negative in region i∪ ii. Thus, because Q1(x1) = 0 implies x1 < 0

or x1 > 1 if Q1(0) and Q1(1) are both positive and δb < 0 implies Q(x1) < 0 for all x1, no

point either in i∪ ii or in region v of Figure 1 corresponds to a base-edge equilibrium. Any

point in region iv ∪ vi corresponds to a unique base-edge equilibrium because Q1(0) and

Q1(1) have opposite signs: Q1(0) < 0, Q1(1) > 0 in region iv, whereas Q1(0) > 0, Q1(1) < 0

in region vi. In region iii, however, there are always two base-edge equilibria because the

whole of region iii lies below the curve from (1
2
, 1) to (0, 2

3
) with equation θ = 2/{3− 2α}

(not shown in Figure 1), implying that ωL < 2α and hence that ∂Q1/∂x2|x2=0 = 1
2
θωL > 0

and ∂Q1/∂x2|x2=1 =
1
2
θ(ωL−2α) < 0 have opposite signs, and so the positive maximum of

Q1 must occur within (0, 1). The dot indicates such a point in region iii, corresponding to

two base-edge equilibria. Here α = 0.42 and θ = 0.7, implying σ0b(α, θ) = −0.7548× 10−1,

σ1b(α, θ) = −0.3096×10−1 and δb(α, θ) = 0.5445×10−2. The corresponding equilibria are a

saddle point at (0.3779, 0) and a globally attracting stable node at (0.8005, 0), as illustrated

by Figure 2(b).

If (x1b, 0) denotes a base-edge equilibrium, then Q1(x1) = 0 implies

x±

1b =
ωL ±

√

4α(1− α− ωL/θ) + ω2
L

2α
(D.10)
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by (D.7), where the square-root sign is positive for the base-edge equilibrium that exists

throughout region iii∪iv∪vi and negative for the additional equilibrium that exists only in

region iii. As before, because r1(x
±

1b, 0) and r2(x
±

1b, 0) are the roots of a quadratic equation,

explicit expressions for them, their product r1(x
±

1b, 0)r2(x
±

1b, 0) and δCE(x
±

1b, 0) are easily

determined as (extremely cumbersome) continuous functions of α and θ on using (1). The

minimum value of δCE(x
+
1b, 0) over region iv of Figure 1 is 0 at (1/2, 1), so the eigenvalues

are real. The maximum value of r1(x
+
1b, 0)r2(x

+
1b, 0) over region IV is 0; it occurs along the

boundary with region iii between (αc, θc) and (1
2
, 1), and along the upper edge between

(1
2
, 1) and (0, 1). For all (α, θ) in the interior of region iv, however, r1(x

+
1b, 0)r2(x

+
1b, 0) < 0,

and so (x+
1b, 0) is always a saddle point in region iv. The eigenvalues are likewise real

on region vi of Figure 1, since the minimum value of δCE(x
+
1b, 0) over region vi is 0 at

(1/2, 0). The minimum value of r1(x
+
1b, 0)r2(x

+
1b, 0) over region vi is 0; it occurs along the

boundary with region v between (αc, θc) and (1
3
, 0), and along the lower edge between

(1
3
, 0) and (1

2
, 0). For all (α, θ) in the interior of region vi, however, r1(x

+
1b, 0)r2(x

+
1b, 0) > 0.

Furthermore, the sum of eigenvalues r1(x
+
1b, 0) + r2(x

+
1b, 0) has a maximum over region vi

of 0, uniquely at (1
2
, 0), implying that the sum of eigenvalues is always negative within

region vi. So (x+
1b, 0) is always a stable node in region vi.

Over region iii of Figure 1, the eigenvalues are still real because the minimum value

of δCE(x
+
1b, 0) over region iii is still 0 at (1/2, 0), the same as for region vi. If the negative

sign is taken in (D.10), then over region iii the eigenvalue product r1(x
−

1b, 0)r2(x
−

1b, 0) has

a maximum of 0 along the boundary from (αc, θc) to (1
2
, 0) that separates region iii from

region vi, implying that the additional base-edge equilibrium is always a saddle point. If

instead the positive sign is taken in (D.10), then the eigenvalue product r1(x
+
1b, 0)r2(x

+
1b, 0)

over region iii has a minimum of 0 along the curve from (1
2
, 0) to (1

2
, 1) where δb(α, θ) = 0

and along the curve from (1
2
, 1) to (αc, θc) where σ1b(α, θ) = 0; these two curves sepa-

rate region iii from region ii and region iv, respectively. Moreover, the eigenvalue sum

r1(x
+
1b, 0) + r2(x

+
1b, 0) has a maximum of 0 at (1

2
, 0) and (1

2
, 1); it also has a local maximum

of approximately −0.0356 at the point where the curve δb(α, θ) = 0 separating region ii

from region iii has a vertical tangent, which we denote by (α∗, θ∗). Because the eigenval-

ues have a positive product and negative sum throughout the interior of region iii, we

conclude that (x+
1b, 0) is invariably a stable node. Note that α∗ is the only zero between 0

and 1 of the cubic equation

α3 − 2α2 + 3α− 1 = 0. (D.11)

Thus α∗ ≈ 0.4302 with θ∗ ≈ 0.691.

The second polynomial is more straightforward to deal with. It is easily verified that

Q2(0) must have the sign of σ0s = −σ0b, that is, the opposite sign from Q1(0); whereas
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Q2(1) must have the sign of −{(2−α)(1− θ) + (1− α)αθ}, which is always negative. The

equation Q2(x2) = 0 has two real roots whenever the discriminant δs is positive, where

δs(α, θ) = α2(1− θ)2 + 4{1− (1− α)θ}{(1 + α2)θ + 2α(1− θ)− 1}. (D.12)

So there is a narrow subset of region v ∪ vi in Figure 1(a) to the right of the dashed

curve where Q2(0) < 0, Q2(1) < 0 and δs > 0, implying that Q2(x2) = 0 has two real

solutions. Points within this narrow region do not, however, correspond to a pair of

side-edge equilibria because ∂Q2/∂x2|x2=0 = −1
2
α(1 − θ)(1 − ωL) and ∂Q2/∂x2|x2=1 =

−1
2
(1 − θ){2 + α(1 − ωL)} are both negative, implying that Q2(x2) = 0 where x2 < −1.

Thus no point in region v ∪ vi of Figure 1 corresponds to a side-edge equilibrium. A side-

edge equilibrium (0, x2s) does exist for every (α, θ) in region i ∪ ii ∪ iii ∪ iv, and δCE(0, x2s)

has a minimum of 0 along its boundary with region v ∪ vi, establishing that the eigenval-

ues are real; but the product of eigenvalues has a maximum of 0 on the same curve, as

well on the line joining (0, 1) to (1, 1) where θ = 0. So r1(0, x2s)r2(0, x2s) < 0 within region

i∪ ii∪ iii∪ iv, implying that (0, x2s) is invariably a saddle point. We do not present the ex-

plicit expression for x2s as a function of α and θ because it is so surprisingly cumbersome.

We have now classified all possible equilibrium points on the boundary of ∆. Any

other equilibrium point must lie in its interior and therefore satisfy φ1(x1, x2) = 0 =

φ2(x1, x2). We have not been able to establish analytically that φ1(x1, x2) = 0 = φ2(x1, x2)

and (x1, x2) ∈ ∆ imply x1 = x2 when ρ = 0, but an exhaustive numerical search of the

parameter square S reveals that all interior equilibrium points do in fact lie on the open

line segment Λ defined by (18). Let (p, p) ∈ Λ be such an equilibrium point, and define

Q(p) = {σ0b + 3α}p2 + αp+ σ0b (D.13)

where σ0b is defined by (D.8). Then

2(1− θ + αθ)φ1(p, p) = {p+ θ(1− 2p)}Q(p)

2(1− θ + αθ)φ2(p, p)) = −{(1− θ)(1− p) + θp}Q(p),
(D.14)

and because (p, p) ∈ Λ guarantees that p+θ(1−2p) and (1−θ)(1−p)+θp are both positive,

it follows from φ1(p, p) = 0 = φ2(p, p) that Q(p) = 0.

Note that Q(1
2
) = 5

4
(1 − α)(1 − θ + αθ), ∂Q/∂p|p= 1

2

= {2 + (2 − α)θ}α + 1 − θ and

∂Q/∂p|p=0 = α are all positive. If also Q(0) > 0, that is, if (α, θ) lies in region III of Figure

1(b), then Q(p) > 0 for all 0 ≤ p ≤ 1
2

and there is no interior equilibrium. Elsewhere,

however, that is for (α, θ) in region I ∪ II of Figure 1(b), Q(0) < 0 < Q(1
2
) implies that an

interior equilibrium (p∗, p∗) ∈ Λ must exist, where

p∗ =
−2σ0b

√

α2 − 4σ0b{σ0b + 3α}+ α
(D.15)
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with σ0b defined by (D.8). Note that the term inside the square root sign must be positive,

because σ0b is negative for all (α, θ) in region I∪II while σ0b+3α is positive for all (α, θ) ∈ S.

As before, an explicit expression for δCE(p∗, p∗) as a continuous function of α and θ

is straightforward to obtain, but it is far too unwieldy for its presentation to serve any

useful purpose. The function assumes the value zero on the closed curve shown in Figure

1(b). Inside the curve, throughout region II, δCE(p∗, p∗) < 0 implies that the eigenvalues

are complex, and so (p∗, p∗) must be a focus. Outside the curve, in both (disconnected)

subregions of region I, δCE(p∗, p∗) > 0 implies that the eigenvalues are real. But the eigen-

value product r1(p∗, p∗)r2(p∗, p∗) has a minimum over region I ∪ II in Figure 1(b) of zero,

all the way along the boundary between (1/2, 0) to (0, 1) that separates region I ∪ II from

region III. So r1(p∗, p∗)r2(p∗, p∗) is never negative, implying that an interior equilibrium is

never a saddle point. Hence (p∗, p∗) is a node in region I and a focus in region II.

The eigenvalue sum r1(p∗, p∗) + r2(p∗, p∗) assumes the value zero along the curve in

Figure 1(b) that extends from the point (α2, 0) ≈ (0.628, 0) where region II touches the

line θ = 1 to the point (
√
2 − 1, 1

2
) ≈ (0.414, 0) where region II touches region III. Below

this curve, r1(p∗, p∗) + r2(p∗, p∗) is negative (with a minimum of −1
4

along the line α = 1);

above the curve, r1(p∗, p∗) + r2(p∗, p∗) is positive (with a maximum of about 0.0662 where

α ≈ 0.304 and θ = 1). Hence (p∗, p∗) is a stable node in region Ia, a stable focus in region

IIa, an unstable focus in region IIb and an unstable node in region IIa.

We have now in effect determined the final destination of (x1(t), x2(t)) for all (α, θ) ∈ S.

For (α, θ) in region III of Figure 1(b), the unique local attractor is a stable node that lies at

(1, 0) in ∆ for (α, θ) to the left of the dashed curve and at (x1b, 0) in ∆ for (α, θ) to the right

of the dashed curve; because this node is the only local attractor, it must also be the global

attractor. So the population evolves to either a monomorphism of C or a polymorphism

of C and U as indicated in Figure 5.

For region Ia∪IIa in Figure 1(b), if (α, θ) lies to the right of the dashed curve from (1
2
, 0)

to (1
2
, 1) bounding region iii, the unique local attractor is (p∗, p∗), which is a stable node for

region Ia and a stable focus for region IIa. A unique local attractor is also the global at-

tractor, so (x1(∞), (x2(∞) = (p∗, p∗) for region IIa∩ iii, whose phase plane is illustrated by

Figure 3(a): the population evolves to a polymorphism of all three strategies. The phase

plane for region Ia ∩ iii is similar, the main difference being that trajectories are straighter

near a node than near a focus (as illustrated by Figure 6(a)). For (α, θ) on the left of the

dashed curve, however, in a narrow wedge sandwiched between the dashed lines con-

verging on (1
2
, 0) and bounded above by the solid curve where r1(p∗, p∗) + r2(p∗, p∗) = 0,

the base-edge equilibrium (x1b, 0) is also a local attractor. Here (x1(0), x2(0)) determines

which local attractor corresponds to (x1(∞), x2(∞)). Regardless of whether (p∗, p∗) is a
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node or a focus, it lies between the origin and a separatrix that joins the unstable node

at (0, 1) to a saddle point at (x−

1b, 0). If (x1(0), x2(0)) lies to the left of this separatrix,

then (x1(∞), x2(∞)) = (p∗, p∗); if (x1(0), x2(0)) lies to the right of the separatrix, then

(x1(∞), x2(∞)) = (x+
1b, 0) instead. This outcome is illustrated by Figure 3(b).

We have already established that (1, 0) and (x1b, 0) are stable nodes in regions iv and

iii, respectively; they are also unique local attractors in these regions. They are there-

fore also globally attracting, that is, (x1(∞), x2(∞)) = (1, 0) for (α, θ) in region iv and

(x1(∞), x2(∞)) = (x1b, 0) for (α, θ) in region iii, as illustrated by Figure 2(a) and Figure

2(b), respectively. It remains only to determine the final destination of (x1(t), x2(t)) for

(α, θ) in the intersection of regions i ∪ ii and Ib ∪ IIb. For this subset of S, the only equi-

librium point—either on the boundary of ∆ or in its interior—is an unstable node (in

a tiny subset of region Ib) or an unstable focus (in a much larger subset of region IIb),

and (x1(t), x2(t)) approaches a limit cycle surrounding the unstable source at (p∗, p∗) as

t → ∞. Strategy D persists, but within a periodic polymorphism of all three strategies, as

opposed to one in which the three proportions are fixed. For illustration, see Figure 4.

Appendix E. Effects of allowing k, λ and ρ to depart from their reduced-model values

In §3 we focused on our reduced model by assuming extreme parasitoid density (a →
∞ or k = 0), perfectly decisive size advantage (λ → ∞) and no owner advantage (ρ = 0).

In §4 we considered effects of relaxing those assumptions by allowing the relevant param-

eters to depart from their limiting values in §3, but we provided few details, especially

concerning the effect of increasing k or decreasing λ, so that we could focus on the more

important effect of increasing ρ. Here we present those details, considering each of k, λ

and ρ in turn. First we consider k.

ρ = 0, λ → ∞, k > 0

When parasitoid density is not extreme (k 6= 0) but there continues to be no owner

advantage (ρ = 0) and size advantage remains perfectly decisive (λ → ∞), for sufficiently

large α there still exists an interior equilibrium (p∗, p∗) that allows strategy D to persist

either statically or dynamically, although its strength is lower than for k = 0. This result is

illustrated by Figure 4(b), where k has increased from 0 to 5×10−7 but all other parameter

values are unchanged from §3. It may be surprising that a small increase in k induces so

marked a reduction in the amplitude of the limit cycle, but the larger and unsurprising

point that is that increasing k reduces the strength of strategy D in the polymorphism

(from 0.245 to 0.23): intuitively, size advantage in a contest is less likely to be favoured

if a contest is less likely in the first place. When the value of k is further increased, the
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strength of D decreases further and the amplitude of the limit cycle continues to shrink

around the unstable focus until it eventually morphs into a stable focus at k ≈ 7.03×10−5

(with p∗ ≈ 0.223). Although (p∗, p∗) remains a stable focus until k ≈ 0.206, at which

it morphs back into an unstable focus surrounded by a small-amplitude limit cycle, it

remains the global attractor only until k ≈ 0.142, at which value (1, 0) morphs from a

saddle point into a second local attractor, this time a stable node. As k increases from

k ≈ 0.142 to k = 0.25, D persists only if (x1(0), x2(0)) lies in a steadily shrinking region

between (0, 0) and a separatrix that joins a base-edge saddle point to a side-edge saddle

point; and at k ≈ 0.25, (p∗, p∗) disappears entirely by merging with the saddle point at

(0, 0) as (1, 0) becomes the global attractor. Thus, in this instance, strategy D is bound to

persist only if the probability that a host is never found does not exceed about 14%; and

if it exceeds 25%, then it is guaranteed to be extinguished instead.

Although the effect of increasing k is similar for other (sufficiently large) values of α,

the complexity of changes to phase-plane topology we have just described is not typical,

being a consequence of (α, θ) lying in region E of Figure 5; for (α, θ) in region D, the

progression is far simpler. Suppose, for example, that α = 0.6 = θ, corresponding to

Figure 3(a). Then as k is steadily increased from 0, (p∗, p∗) remains a stable node as it

moves steadily along Λ towards the origin, merging with the saddle point there at k =
37
113

≈ 0.327 as a stable node emerges from (0, 0) to progress along the base edge of ∆

as k increases further. This base-edge equilibrium remains the new global attractor until

k ≈ 0.392, at which it reaches (1, 0). Thus, in this instance, strategy D is bound to persist

as long as the probability that a host is never found does not exceed about 33%; if it is

larger than that, but less than about 39%, then a polymorphism of C and U takes over;

and if it exceeds that higher value, then only C persists. An analytical expression for the

critical value kc at which strategy D disappears is kc = −σ0b(α, θ)/{1 − θ + (2 − α)αθ},

where σ0b is defined by (D.3); note that kc must be positive, because σ0b < 0 for all (α, θ)

lying in region D ∪ E of Figure 5 (Appendix D). Note also that kc increases with α.

The essence of the above discussion is that increasing k decreases the strength of strat-

egy D by shifting (p∗, p∗) along Λ until it becomes unstable, ultimately to be absorbed by

the origin. Note, however, that this description presumes ρ = 0. When ρ > 0, as discussed

in §4, increasing k still shifts (p∗, p∗) towards the origin, but it it is no longer constrained

to lie in Λ. For an illustration of this point, compare Figure 6(b) to Figure 6(d).
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ρ = 0, λ < ∞, k = 0

Now we consider λ. When ρ = 0 = k but λ is finite, in place of (D.14) we obtain

2(1 + λ)(1− θ + αθ)φ1(p, p) = −{p + θ(1− 2p)}R(p)

2(1 + λ)(1− θ + αθ)φ2(p, p)) = {(1− θ)(1− p) + θp}R(p)
(E.1)

where

R(p) = (4α− (1 + λ){3α+ σ0b})p2 + α(1− λ)p− λσ0b + (1− α)2θ − 1

= (α− σ0b)p
2 + αp+ (1− α)2θ − 1− λQ(p)

(E.2)

with Q and σ0b defined by (D.13) and (D.8), respectively. For (p, p) ∈ Λ to be an interior

equilibrium, we must have φ1(p, p) = 0 = φ2(p, p), implying R(p) = 0. Because R(1
2
) =

−5
4
(1 + λ)(1− α)(1− θ + αθ) and ∂R/∂p|p=0 = α(1− λ) are both negative, a zero in (0, 1

2
)

requires a large enough λ to ensure P (0) > 0, implying in particular that σ0b < 0. So (α, θ)

must lie in region I ∪ II of Figure 1(b), and the interior equilibrium is absorbed by the

origin when P (0) = 0 or

λ =
(1− α)2θ − 1

σ0b
. (E.3)

As long as λ exceeds this value, however, an interior equilibrium (p∗, p∗) ∈ Λ will exist,

where p∗ is the only zero of Q(p on (0, 1
2
); an explicit expression for p∗ can be found, but it

is too unwieldy to be useful. Note that R(p) = 0 implies Q(p) = 0 in the limit as λ → ∞.

For illustration, again consider α = 0.6 = θ, corresponding to Figure 3(a). Here, as λ is

steadily reduced, (p∗, p∗) remains a stable node as it moves steadily down the line x1 = x2

towards the origin, and the strength of strategy D in the associated polymorphism of all

three strategies does not differ appreciably from its value in the limit as λ → ∞ until λ

reaches double figures; for example, p∗ = 0.282 for λ = 99 and p∗ = 0.229 for λ = 9 (as

compared to p∗ = 0.287 in the limit as λ → ∞). The decrease of p∗ then accelerates, but

(p∗, p∗) remains the global attractor until at λ = (2213 + 1140
√
19)/2137 ≈ 3.36 it morphs

from a stable focus into an unstable one, as a saddle point and a stable node emerge

together at x1 ≈ 0.214 on the base edge of ∆. As λ is further reduced, (p∗, p∗) continues

down x1 = x2 towards the origin as the saddle point moves to the left, while the stable

node becomes the global attractor and moves to the right; both the saddle point and

(p∗, p∗) are absorbed by the origin at k ≈ 3.05, in agreement with (E.3). The phase-plane

topology resembles that of Figure 2(b), except that there is an extra saddle point on the

roof edge of ∆ and (1, 0) is an unstable node. Subsequently, the base-edge node remains

the global attractor for all λ > 1.

For a second illustration, again consider α = 0.5, θ = 0.8, corresponding to Figure

4(a). Here, as λ is steadily reduced, (p∗, p∗) remains an unstable node surrounded by
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a globally attracting limit cycle until λ = 7, at which a saddle point and a stable node

emerge together at x1 =
1
2

on the base edge of ∆. As λ is further reduced, (p∗, p∗) continues

down x1 = x2 towards the origin, morphing from an unstable focus into an unstable node

at λ ≈ 5.19, while the saddle point moves to the left and the stable node becomes the

global attractor and moves to the right; both the saddle point and (p∗, p∗) are absorbed by

the origin at λ = 4, in agreement with (E.3). Subsequently, the base-edge node remains

the global attractor for all λ > 1. First we consider k.

ρ > 0, λ → ∞, k = 0

Finally we consider ρ. In §4 we made the point that although a side-edge equilibrium

corresponding to (α, θ) in region v ∪ vi of Figure 1 is impossible if ρ = 0, for ρ = 0

sufficiently large ρ may induce a side-edge global attractor. In this regard, it is instructive

to consider the limit as ρ → 1. From (16) we find that φ2(0, x2) = (1− x2)Q2(x2), where in

place of the expression in (D.7), obtained for ρ = 0, the quadratic polynomial Q2 is now

defined by

Q2(x2) = αωN(1− ωLθ)(1− x2)− (1− θ){ωLωN(1 + x2
2) + (ωL

2 + ωN
2)x2} (E.4)

with ωL and ωN defined by (1). Since Q2(0) = α(1− θ)ωN > 0 and Q2(1) = θ− 1 < 0, there

must exist precisely one x2s ∈ (0, 1) such that Q2(x2s) = 0. So a side-edge equilibrium

(0, x2s) exists. Expressions for x2s and hence r1(0, x2s), r2(0, x2s) as explicit functions of

α and θ are again too cumbersome for presentation. As in Appendix D, however, we

can show that both eigenvalues are always negative inside S. So (0, x2s) not only always

exists in the limit as ρ → 1, but also is always a stable node.

Appendix F. Ownership asymmetry in the absence of size asymmetry

Here we present some analytical results obtained for the limiting case in which ρ > 0

but λ = 1 and k = 0, so that ownership asymmetry obtains at high parasitoid density

without size asymmetry. With λ = 1, (10)–(14) and (B.1)–(B.3) now imply

dx1

dt
= 1

2
x1{θ(1− x1 − x2) + x2}S(x1, x2)

dx2

dt
= −1

2
x1{θx1 + (1− θ)(1− x2)}S(x1, x2)

(F.1)

where

S(x1, x2) = αρ(1− x1)
2 + (1− ρ)(1 − x2)

2 + 2x2 − α(1 + x1
2). (F.2)

Because the terms in squiggly brackets in (F.1) are both positive inside ∆, any stationary

points other than the three vertices of ∆ must lie on an arc of the hyperbola with equation
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S = 0. This curve intersects the interior of ∆ only if 2α+ρ > 1, and then always intersects

x2 = 0 to the right of the origin. Hence there are no interior or side-edge stationary points

(other than the vertices) if 2α+ ρ < 1, in which case, (1, 0) is the global attractor; whereas

if 2α + ρ > 1, then every point within ∆ on the curve S = 0 is a stationary point. In

this case, as t → ∞, (x1(t), x2(t)) will approach the curve from above or below according

to whether (x1(0), x1(0)) lies above or below the curve, since dx1

dt
is positive or negative

according to whether (x1, x2) lies above or below the curve while the signs are reversed

for dx2

dt
. Hence strategy C invariably persists in the absence of size asymmetry, whereas

both strategy D and strategy U risk elimination through random drift, since every point

along S = 0 is only metastable. Note that θ becomes irrelevant in the absence of size

asymmetry.

Appendix G. Phase-plane analysis for θ =
1

2
with k = 0, λ → ∞

Proceeding as in Appendix D and using the same methods, in place of (D.3)–(D.5) we

obtain

4(1 + α)r1(0, 0) = c(α, ρ), r2(0, 0) = −r1(0, 0)

4(1 + α)r1(0, 1) = 2− (1− ρ)α2 + 2αρ, 2r2(0, 1) = 2− α(1− ρ)

4(1 + α)r1(1, 0) = 2α(α+ ρ+ 1)− 1 + ρ, 2r2(1, 0) = 2α+ ρ− 1

(G.1)

where

c(α, ρ) = 2α− (1− ρ)(1− α2) (G.2)

and 0 < α, ρ < 1; the curve c = 0 forms the right-hand boundary of the unshaded region

2 in Figure 8. Inspection of (G.1) shows that (0, 0) is invariably a saddle point, (0, 1) is

invariably an unstable node and (1, 0) is a stable node, an unstable node or a saddle point

according to whether

α < 1
2
{
√

ρ2 + 3− ρ− 1}, (G.3)

α > 1
2
(1−ρ) or α lies between these bounds. In particular, (1, 0) is an attractor when (α, ρ)

lies in region 1 of Figure 8. It is also the global attractor for that region.

A roof-edge equilibrium (x1r, x2r) with φ1(x1r, x2r) = 0 = φ2(x1r, x2r) and x1r + x2r = 1

exists whenever α > 1
2
(1 − ρ); here φ1 and φ2 are defined by (17). When it exists (that

is, when (1, 0) is an unstable node), this equilibrium is invariably a saddle point because

r1(x1r, x2r)r2(x1r, x2r) < 0 throughout the relevant region.

For equilibria on the base edge of ∆ where 0 < x1 < 1, x2 = 0 or on the side edge
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where x1 = 0, 0 < x2 < 1, (D.6) continues to hold but with

4(1 + α)2Q1(x1) = α
{

{(1 + α2)ρ− (1 + α)2}x1
2

− {2α2ρ+ (1 + α)(3ρ− 1)}x1

}

− (1 + α)c(α, ρ)

4(1 + α)2Q2(x2) = −{2α + (1− ρ)(1 + α2)}x2
2

− {2ρ+ α(1 + α)(1 + 3ρ)}+ (1 + α)c(α, ρ)

(G.4)

in place of (D.7). A base-edge equilibrium occurs where Q1(x1) = 0 for x1 ∈ (0, 1). Because

∂Q1/∂x1|x1=1 is invariably negative, no such equilibrium is possible if Q1(0) and Q1(1) are

either both positive or both negative with ∂Q1/∂x1|x1=0 < 0. These constraints alone ex-

clude much of the parameter square S̃ in Figure 8; and much of what remains is excluded

by the constraint that if Q1(0) and Q1(1) are both negative with ∂Q1/∂x1|x1=0 > 0, then

the equilibrium exists only if Q1(x1) has a positive maximum, that is, only if (α, ρ) lies to

the left of the curve with equation

α{2α2ρ+ (1 + α)(3ρ− 1)}2 = 4(1 + α)c(α, ρ){(1 + α)2 − (1 + α2)ρ}, (G.5)

in which case there exists a pair of base-edge equilibria, (x±

1b, 0). Thus a base edge-

equilibrium (x+
1b, 0) exists when (α, ρ) lies in either the unshaded region 2 of Figure 8

or in the tiny region 5, where a second base-edge equilibrium (x−

1b, 0) also exists. Because

r1(x
+
1b, 0)r2(x

+
1b, 0) has a minimum of 0 while r1(x

+
1b, 0) + r2(x

+
1b, 0) has a maximum of 0,

(x+
1b, 0) is always a stable node; it is also the global attractor in region 2. It continues to

be a stable node in region 5 and typically remains the final destination of (x1(t), x2(t)),

but in this region there also exists either a stable side-edge node or a stable interior focus

(according to whether region 5 intersects region 3 or region 4); whereas r1(x
−

1b, 0) is always

a saddle point.

A side-edge equilibrium (0, x2) = (0, x2s) occurs where Q2(x2) = 0 for x2 ∈ (0, 1).

Because ∂Q2/∂x2|x2=0, ∂Q2/∂x2|x2=1 and Q2(1) are all invariably negative, the condition

for such an equilibrium to occur is Q2(0) > 0 or c(α, ρ) > 0. Thus a side-edge equilibrium

(0, x2s) occurs when (α, ρ) lies in either region 3 or region 4 of Figure 8; however, it is a

stable node only when (α, ρ) lies in region 3, since it is only here that r1(0, x1s)r2(0, x1s)

has a minimum of 0 while r1(0, x1s) + r2(0, x1s) has a maximum of 0. Except where region

3 intersects region 5, (0, x2s) is also the global attractor for region 3.

For (α, ρ) in Region 4 of S̃ there always exists an interior equilibrium (p∗, q∗) ∈ ∆ such

that φ1(p∗, q∗) = 0 = φ2(p∗, q∗). Its boundary is the curve with equation d = 0, where

d(α, ρ) = φ1(0, x2s) (G.6)
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is an extremely cumbersome expression that we do not present. This boundary extends

from (αd, 0) = (
√
2−1, 0) ≈ (0.414, 0) to (1, ρd) ≈ (1, 0.52) in Figure 8, and it divides region

5 into a left-hand part that intersects with region 3 and a right-hand part that intersects

with region 4. In both parts, there are two local attractors. In the left-hand part, these

attractors are both stable nodes, one on the side edge and one on the base edge of ∆; in

the right-hand part, the attractors are a stable base-edge node and a stable interior focus;

and in both parts of region 5 there is a second base-edge equilibrium, a saddle point,

which attracts a separatrix emanating from the unstable node at (0, 1), as in Figure 3(b).

In both cases, the equilibrium to the left of this separatrix (either the side-edge node or

the interior focus) has only a very small basin of attraction, and unless (x1(0), x2(0)) lies

within this tiny region, (x1(∞), x2(∞)) is the base-edge node to the right of the separatrix.

To illustrate, we pick a point in each part, each represented by a dot in Figure 8. For

(α, ρ) = (0.39, 0.1), the attractors are nodes at (0.2472 × 10−1, 0) and (0.4442, 0), with the

separatix ending at (0.7459 × 10−1, 0); and for (α, ρ) = (0.42, 0.02), the attractors are a

focus at (0.2394× 10−1, 0.4131× 10−1) and a node at (0.5681, 0), with the separatix ending

at (0.9817× 10−1, 0).
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