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ABSTRACT

Population models can provide valuable tools for ecological risk assessment (ERA). A growing amount of work on model
development and documentation is now available to guide modelers and risk assessors to address different ERA questions.
However, there remain misconceptions about population models for ERA, and communication between regulators and
modelers can still be hindered by a lack of clarity in the underlying formalism, implementation, and complexity of different
model types. In particular, there is confusion about differences among types of models and the implications of including or
ignoring interactions of organisms with each other and their environment. In this review, we provide an overview of the key
features represented in population models of relevance for ERA, which include density dependence, spatial heterogeneity,
external drivers, stochasticity, life-history traits, behavior, energetics, and how exposure and effects are integrated in the
models. We differentiate 3 broadly defined population model types (unstructured, structured, and agent-based) and explain
how they can represent these key features. Depending on the ERA context, some model features will be more important
than others, and this can inform model type choice, how features are implemented, and possibly the collection of additional
data. We show that nearly all features can be included irrespective of formalization, but some features are more or less easily
incorporated in certain model types. We also analyze how the key features have been used in published population models
implemented as unstructured, structured, and agent-based models. The overall aim of this review is to increase confidence
and understanding by model users and evaluators when considering the potential and adequacy of population models for

use in ERA. Integr Environ Assess Manag 2020;00:1-20. © 2020 SETAC
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INTRODUCTION

The last 2 decades have seen substantial advances in the
development of population models for the ecological risk
assessment (ERA) of chemicals. These include guidance on
systematic and consistent model creation and doc-
umentation (Schmolke, Kapo et al. 2017; Grimm et al. 2020),
model evaluation and testing (Schmolke, Thorbek,
DeAngelis et al. 2010; Augusiak et al. 2014; Grimm
et al. 2014) and choosing models of appropriate complexity
to address different types of risk assessment questions
(Raimondo et al. 2018). A growing collection of case
studies has clearly demonstrated how such models can
inform risk assessment and risk management decisions
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(Forbes et al. 2016; Hommen et al. 2016), and slowly but
surely there are indications that the acceptance of pop-
ulation models for risk assessment will continue to increase
(NRC 2013; EFSA 2014). Nevertheless, there remains con-
fusion about population models for ERA, including that re-
lated to differences among model types and the
implications of including or ignoring different aspects of
reality in the models. In addition, there is a lack of consensus
on the role that the models should play in the ERA process.

Population models can be used to assess population-level
effects over extended time periods, representing observed
organism-level effects in an ecologically relevant context
(Forbes et al. 2011; Hanson and Stark 2011). Although
population models applied to ERA contexts share the ob-
jective to provide a tool for estimating long-term risks to
populations, their underlying formalism, implementation,
and complexity vary widely (Grimm 2010; Schmolke,
Thorbek, Chapman et al. 2010; Forbes et al. 2016;
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Raimondo et al. 2018). Population dynamics can be for-
malized in models according to 3 basic types: unstructured,
structured, and agent-based. These 3 types are mechanistic
models, given that they represent biological mechanisms
underlying the structure and dynamics of populations. They
differ from statistical, or empirical, models such as species
distribution models (Elith and Leathwick 2009), which are
based on correlations.

Many characteristics of a species and its interactions with
the environment can affect the structure and dynamics of its
populations and, hence, also its responses to toxic chem-
icals. Key features that need to be considered irrespective of
model type include density dependence, spatial hetero-
geneity, external drivers, stochasticity, life-history traits,
behavior, energetics, and how exposure and effects are in-
tegrated in the models (see Table 1). In population models,
they may be simplified, represented in great detail, or not
represented at all, depending on the specific purpose and
scope of the model, the data available for parameterization
and testing, but also on the familiarity of the model devel-
opers with different types of models. Depending on the
problem at hand, some features are more important than
others and could inform the choice of a model type. The
absence of clarity and transparency about how to choose
the key features to represent and the adequacy of different
model types can increase skepticism toward population
models.

Our goals are to provide an overview of the key features
represented in population models of relevance for ERA, to
clarify the differences among population model types, and
define how they incorporate, or do not incorporate, these
key features. We discuss the advantages and limitations of
each model type and provide a perspective on the insights
that can be gained by using different model structures and
including or excluding various model features. We focus on
the conceptual differences among model types but not on
their formalisms in terms of equations or algorithms, which
have been covered in earlier reviews of population models
for ERA (Grimm 2010; Schmolke, Thorbek, Chapman et al.
2010), or on details of parameterization and implementation,
which are covered in textbooks and monographs about each
model type (see references in the Model types section).

Our overview is augmented by a statistical analysis of 450
population models published between 2004 and 2014 and
compiled in a recent review (Forbes et al. 2016). In the re-
view, models were categorized by model type and assessed
with respect to features they represent. We evaluate these
previously published models in terms of whether or not they
include the key features of Table 1 and how inclusion is
correlated with the 3 main model types. Our overview and
analysis are intended to facilitate the systematic and effi-
cient selection and evaluation of population models for use
in ERA, and to increase their understanding and use by risk
assessors and risk managers.

We conclude that, as a result of their greater flexibility,
agent-based models (ABMs) are more amenable to the ad-
dition of all of the key features than are unstructured or

structured model types if the data are available to do so.
However, ABMs are more difficult to implement, analyze,
and communicate than are the other model types. Model
complexity is not determined by model type, but rather by
the number and type of features that are incorporated. The
greater the model complexity, the more difficult a model is
to implement and analyze, and the greater are the data
demands. There is therefore a trade-off between the need to
incorporate a particular feature, data availability, and com-
putational and/or mathematical effort that modelers have to
take into account when using population models to answer
specific ERA questions. When possible, we advise the use of
a multimodeling approach because it can increase con-
fidence in model outputs to inform regulatory decisions.

MODEL TYPES

We distinguish 3 model types: 1) unstructured, 2) struc-
tured, and 3) ABMs (see Figure 1). Other terms used are
“scalar” or “ordinary differential equation” (ODE) for un-
structured models, “matrix” for structured models, and
“individual-based” for ABMs, but we suggest using our ter-
minology consistently in the future because it is non-
technical and based on the key structural feature of each
model type. Unstructured models ignore population struc-
ture whereas structured models do not, and ABMs focus on
the agency of individuals, in particular their adaptive be-
havior. Well-known examples of these model types are
provided by Liu et al. (2005) for unstructured models,
Caswell (2001) for structured models, and Grimm and
Railsback (2005) and Topping et al. (2009) for ABMs. The
key aspects that distinguish the 3 model types are the kind
of state variables they use to characterize a population
and consequently, how demography, that is, survival and
reproduction, is represented.

In unstructured population models, the only state variable
used is population size or total biomass. Any structure re-
garding, for example, age, size, sex, or distribution in space
is disregarded. All these aspects are implicitly averaged over
the entire population, and only the net outcome of survival
and reproduction, the per capita population growth rate, is
considered. It is possible in principle to add stochasticity to
unstructured models, but this is rarely done for ERA because
stochastic differential equations are much more difficult to
parameterize, solve, and interpret than ODEs (e.g., Goel and
Richter-Dyn 1974). Because population structure, spatial re-
lationships, and usually also stochasticity are not explicitly
implemented in unstructured models, they include the im-
plicit assumption that populations are large enough to dis-
regard differences among individuals, space, and random
variations (i.e., environmental and demographic stochas-
ticity). In addition, unstructured model approaches imply that
all interactions in the population are global, that is, every-
body equally affects, and is affected by, everybody else. For
well-mixed populations, for example, Daphnia populations in
the laboratory, this assumption holds (e.g., Martin
et al. 2013), but for most real populations in the field it does
not. Because of their limitations, unstructured models in an
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ERA context are used mostly as models of subsystems where
their limitations are less relevant. Implementing unstructured
models is straightforward. The well-established language of

V]
g _C*; G calculus can be used to clearly communicate the models,
—g _é % and standard software packages exist to solve the equations
'é é b numerically (but see Seppelt and Richter 2005 on possible
s @ é Y numerical artifacts). “Solutions” in this case are the projected
g 2 ;; TQ changes of population size over time, that is, population size

gk time series.

285 In structured population models, the state variables cap-
< ture certain aspects of population structure, such as age or
. stage. For example, for species with annual reproduction,
o5 ; numbers of individuals in each age class, ranging from re-
- § E’é cruits to the maximum achievable age, form a vector char-
% %‘E o acterizing the structure of the population in a given year.
Q£ é § © Structured models represent the fact that demographic
g :E él g 2B rates (sometimes called “life-history traits”) depend on age
< "S 89 %E or stage, and demographic rates are averaged accordingly
& -% S5 5 within each age or stage. Structure often matters. For
E3%5 85 example, a population of mainly adults will have a

w

different growth rate, and will respond differently to stress,
than a population comprised of mostly juveniles. Most
structured models are implemented by a set of linear dif-
ference equations, representing each class of the structure,
for example, each yearly age class. Each equation calculates
the number of individuals in the next time step. The first
equation, for class zero, includes the contribution to this
class from all other age classes. Structured models are
widely used in conservation biology, fisheries management,
and related fields, and are relatively popular in ERA (Forbes
et al. 2016). Data from field surveys of populations are often

Structured

(Continued)
demographic variables to
defined exposure scenarios

How to include in population models
Adjust stage- or age-specific

Table 1.

© .o e .
= recorded as age- or stage-specific numbers, which can be
v) e [ . .
52 5 directly used to parameterize structured models. The
- 502A % > population growth rate can easily be calculated and used
(4] I £ = . . .
= g%_% % =3 as a comparative endpoint for risk assessment (Forbes
w o . .
g é% o = 8 = et al. 2008, 2016). Additionally, structured models can in-
5 & £ > .
L 58 576“’6 2 clude further features, such as density dependence or sto-
= % ‘Sy% § £® @ chasticity, but then population growth cannot be calculated
3 o 0 DoV : . . . .
6052088 L 45 analytically, and population dynamics are simulated by up-
SSED S0 LF : . . . .
2 s 9 dating the matrix of demographic rates in each time step
o B . .
89 and multiplying it by the current vector that represents the
= s o
c 2 < g population's structure. Structured models are easy to com-
= > < O . . . P
- £ 8 L municate and implement with existing software.
(O 5 . .. . .
SEE g5 57; In ABMs, each individual is represented and may differ
c 9 @5 * S o . . .
S o5 ig 3 E 2 from all other individuals, depending on its traits and be-
= — el . .. . .
&= qg g g g o 35 havior. Individuals are characterized by a set of state varia-
7} 2 I . .
o s P % 8 g% bles. In the simplest case this would only be age, and the
= o .
22023 % O ABM would be similar to an age-structured model. Usually,
8 O O O 0 i . .
go2l% s S however, further variables are included because they are
ks . , . . .
S ¢ oo = % assumed to affect the individual's behavior, life history, and,
o o . . .
38 in turn, survival and reproduction. Agent-based models are
o 2% used when one or more of the following features are con-
c = . . . . . . .
° o é?g sidered essential: 1) individuals are different, both within a
c 9 = . . .
o 2322 58 population and over time as they grow and develop; 2) in-
5 88¢% B S dividual lly interact locall t globally; 3) individual
5 500 e ividuals usually interact locally, not globally; 3) individuals
T 930 @ : : : i
S £ e g show adaptive behavior. Their decisions, for example, about
— o .
& w how to allocate energy to growth, maintenance, or
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Wild Population (N=100)

Population models

(A) Unstructured

I‘IX N

Rate of change of N equals
current N modified by birth
and death processes

9

(C) Agent—based

Change of |nd|V|duaIs state
variable over short time
interval

(B) Structured

~
Woen e

Change of N of cohort i over
short time interval

Figure 1. Schematic representation of the 3 main model types. Each blue circle represents an individual and its radius the age, size, or any other trait. The models
represent the same wild population in 3 different ways: Unstructured models consider an average individual, without making any distinction among the organisms
of the wild population (A). Structured models divide the population into classes (N, Ny, N3), in which different organisms of the same age, stage, and size are
averaged (B). Agent-based models (ABMs) represent each organism, taking into account as much individual variability as considered relevant (for more

information, see the text) (C).

reproduction, or when and where to forage, depend on
what they know, what they want, and on the state of
themselves and their environment. In ABMs, demographic
rates thus emerge from agent interactions and/or the
adaptive behavior of individuals rather than being imposed
via, for example, fixed survival rates or functions. Many
ABMs are spatially explicit because they consider local in-
teractions and the responses of individuals to local habitat
features. Likewise, most ABMs are stochastic to represent
variation that has been observed and is likely to be relevant,
but for which mechanistic representation is considered in-
feasible or not necessary. Agent-based models have been
used in ecology since about 1990. They are implemented as
computer programs. In contrast to unstructured and struc-
which use the established language of
mathematics and calculus, initially no established methods
for formulating, implementing, or analyzing ABMs existed.
However, the last decade has seen a maturation of such
methods, including standards for model formulation and
communication (overview, design concepts, details [ODD]

tured models,

protocol, Grimm et al. 2020), overall quality assurance
(transparent and comprehensive ecological modeling
[TRACE] documentation, Schmolke, Thorbek, DeAngelis
et al. 2010; Grimm et al. 2014), and systematic model
analysis (Thiele et al. 2012; Grimm and Berger 2016). Still,
the range of complexity and the structural diversity of ABMs
are much greater than those of unstructured and structured

models. They are usually harder to develop, parameterize,
and analyze, but they are richer in structure and mecha-
nisms, which makes them more realistic and easier to vali-
date with various aspects of real systems (“pattern-oriented
modeling,” Grimm et al. 2005; Grimm and Railsback 2012).

KEY FEATURES TO CONSIDER IN MODEL
DEVELOPMENT AND EVALUATION

In this section, we provide an overview of key features that
should be considered when developing, implementing, and
evaluating population models used for ERA: density de-
pendence, spatial heterogeneity, external drivers, stochas-
ticity, organism life-history traits, behavior, energetics, and
integration of exposure and effects. All these features are
relevant for understanding population dynamics in general,
and each of them has also been demonstrated in case
studies to be relevant for ERA. Table 1 summarizes and
briefly defines these features and illustrates that often the
3 main model types can take into account any of these
features. The following sections describe each feature in
more detail by discussing their relevance for ERA, data
needs, and whether and how they can be represented in the
different model types.

Density dependence

“Density dependence” refers to variation in population
growth rate with population size (Lebreton 2009). It can be
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caused by different processes. The most common is when a
resource is limited and individuals have to share it. In-
dividuals may compete directly or indirectly for resources. In
interference competition, individuals interact directly, often
through aggression, to compete for a limiting resource, for
example, a territory. In exploitative competition, individuals
interact indirectly by using up a common limiting resource,
for example, food or space. Competition may also be de-
scribed as contest competition (in which the winner takes all
and the loser gets none, e.g., territory, mate) or scramble
competition (in which everyone gets less, e.g., food or
space). Other sources of density dependence, such as co-
operation and facilitation, can induce an inverse density
dependence known as the “Allee effect” (Courchamp et al.
1999). In these cases, populations under a certain density
threshold have a very low, or even negative, population
growth rate, which can increase their likelihood of extinction
(Courchamp et al. 1999; Pavlova et al. 2016). Hence, growth
rate actually increases with increasing density. Allee effects
can, for example, result from limitations in mating caused by
low density or any other social mechanisms that require a
certain minimum density.

Relevance for risk assessment. Whereas it is expected that
most populations in the field are under some form of
density-dependent control (Moe 2008), most ecotoxico-
logical tests are performed under density-independent
conditions in which test organisms are not constrained by
limited resources. This is relevant for risk assessment be-
cause ignoring density dependence can lead to both over-
and underestimation of toxicant effects in field populations.
For instance, compensation mechanisms can occur when
populations under strong density dependence are exposed
to a stressor (Vaugeois et al. 2020): decreased density after
exposure to a chemical reduces competition so that the
remaining individuals may grow faster and bigger and re-
produce more. In terms of overall biomass or abundance,
the direct negative effect of the stressor may thus be quickly
compensated but still lead to changes in population struc-
ture that affect risk (Gergs et al. 2013). Forbes, Sibly et al.
(2001) reviewed experimental studies of density—toxicant
interactions and found that some studies showed additive
interactions between density and chemical effects on pop-
ulation growth rate, others found less-than-additive effects,
and still others found more-than-additive effects. In at least
1 study, the form of the interaction varied across a chemical
concentration gradient, with effects shifting from less-than-
additive at low toxicant concentrations to more-than-
additive at higher toxicant concentrations (Linke-Gamenick
et al. 1999). Forbes, Sibly et al. (2001) were unable to
identify simple, general a priori predictions of the responses
to toxicants of populations living under density-dependent
control, which argues for explicitly incorporating density
dependence in population models.

Incorporation in population models and data needs. There
are 2 general approaches for incorporating density

dependence in population models. The first involves making
assumptions about the form of the density dependence and
choosing a particular function to describe the relationship
between population density and population growth rate
(e.g., the Ricker Model, Ricker 1954). The second approach
involves incorporating rules for individuals to interact
with each other or with the environment such that density
dependence arises as an emergent property of the system.
Density dependence is usually included in unstructured
population models by assuming that the population grows
logistically until population growth rate is zero and density
reaches a plateau (the habitat carrying capacity). Carrying
capacities are inferred from observed equilibrium pop-
ulation sizes or from expert judgments or metaanalyses of
the literature. Modifications of the logistic equation can also
be found, for example, to take into account the Allee effect.
Density dependence can be added to structured models
using a discrete time form of the logistic equation (Miller
et al. 2002). This model is simple because it does not require
additional parameters or mathematical functions. If density
dependence is known to act only on certain age or stage
classes of the population (e.g., adult males competing for a
territory), or if the strength of density dependence is likely to
vary with stage or age, structured models can be used to
incorporate such effects (Sable and Rose 2008). In-
corporating density dependence in structured models will
require assumptions to be made about the carrying capacity
of the population (Miller et al. 2002). In ABMs, similar ap-
proaches as in unstructured and structured models can be
incorporated but are rarely used because they require the
unrealistic assumption that individuals “know” the density
of the population. In ABMs, density dependence rather
emerges as a result of frequency-dependent interactions
among individuals with each other or through the ex-
ploitation of simulated resources. Incorporating density
dependence in ABMs requires that rules governing the
behavior of individuals in the model be defined.
Density-dependence relationships are calibrated with
laboratory or field data (Strauss et al. 2016). However,
specifying density-dependent relationships from field data
is very difficult (Sable and Rose 2008; Lebreton 2009). At the
same time, if little is known about the strength or form of
density dependence in a population, it may be misleading
to assume an arbitrary functional relationship. For example,
Raimondo (2013) showed that the functional form of density
dependence can determine whether toxicant exposure and
density dependence are synergistic, compensatory, or ad-
ditive. Thus, getting the functional form incorrect can dra-
matically change model outcome by influencing how
density and toxicants interact. With ABMs it can be easier to
represent density dependence because, for well-studied
species, sufficient data can allow the realistic representation
of behavior and, hence, the emergence of density
dependence (Stillman and Goss-Custard 2010).

Model type considerations. Density dependence can be
included in all model types. In unstructured and structured
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models, this usually is done by adjusting a theoretical
function, whereas in ABMs density dependence can be im-
plemented as an emergent property linked to the rules that
govern interactions among individuals and are influenced by
environmental drivers. Letting density dependence emerge
has the advantage that this can also be done for new con-
ditions, which wusually is not possible for imposed
functional relationships.

Spatial heterogeneity

A model is deemed spatially explicit if it incorporates
spatial heterogeneity and represents a landscape using cells
(grids) or other approaches (e.g., networks of patches)
(Dunning et al. 1995; Minor and Urban 2007). The basic idea
of “grid-based” models is that within each unit or cell, spatial
relationships, for example, the position of organisms, are
ignored. This requires using a cell size that is small enough
for this assumption to hold. If no such cell size can be found,
for example, because the organisms to be represented vary
over orders of magnitude in size, grid-free approaches are
used. Examples are the zone-of-influence approach for
modeling plant populations and communities (e.g., IBC-
Grass, Reeg et al. 2018), or network-based models in which
habitat patches are modeled as nodes in a network and
links between nodes represent possibilities for movement
between them (Bodin and Saura 2010).

Relevance for risk assessment. Organisms and environ-
mental toxicants both exhibit considerable temporal and
spatial heterogeneity (Spromberg et al. 1998). Therefore,
representing spatial differences can be particularly relevant
to study ecological processes that operate at different
spatial scales, to explore different management strategies
(Dunning et al. 1995), and to understand temporal
and spatial heterogeneity of environmental toxicants
(Spromberg et al. 1998). Spatially explicit population
models can increase the accuracy of exposure assessments
and thereby support management decisions (Purucker
et al. 2007). Moreover, it is valuable to consider spatial
heterogeneity and take into account zones beyond the
toxicant-contaminated area because fluxes of organisms or
materials functionally link the contaminated area to the
surrounding landscape (Johnson 2002).

Incorporation in population models and data needs. By
themselves, unstructured population models cannot deal
with space, but if used as submodels of local habitat
patches, they can represent space differences among dif-
ferent habitats. For example, one can divide space into two
or more patches (or grid cells), each containing a population
described by differential equations. These (sub)populations
are characterized by their own abundance, survival, re-
production, immigration and emigration rates and possibly
other properties (Dunning et al. 1995). Mathematically,
these models can represent the studied systems in 2 ways.
One way is using a set of diffusion-reaction equations for
each grid cell. They add a diffusion term, which represents

random movement, to the ODE. Diffusion is driven by the
difference in population densities between neighboring grid
cells and used to calculate immigration or emigration rates
(Spromberg et al. 1998). The other way is to use only
1 equation describing the change in the fraction of occupied
patches over time (Maurer and Holt 1996). Spatially explicit,
unstructured models can be used to study dispersal and
site-specific contamination, evaluate population persis-
tence, or explore possible rules of thumb for predicting
when a chemical exposure is likely to endanger the persis-
tence of an entire population (Maurer and Holt 1996). In
structured models, space is taken into account using a
similar logic as with unstructured models: Subpopulations in
different habitats are represented by separate matrices that
are linked by functions defining migration between the
subpopulations. The demographic rates combine demo-
graphic and dispersal information in potentially complicated
ways (Hunter and Caswell 2005). Usually, species' habitat
and dispersal are included in stage-structured matrices
using integrodifference equations, that is, equations in-
tegrating both population demography and dispersal
probabilities in a spatial domain (Lutscher and Lewis 2004).
Therefore, data on survival and reproduction rates and their
spatiotemporal variability at different stages are required
(Akgakaya 2000). Because structured models are extensively
used in conservation biology and species management, a
substantial effort has been made to include spatial aspects
in the models, despite the mathematical complexity of
doing so. For example, RAMAS Landscape (Ferson 2002;
Akgakaya et al. 2004) links a metapopulation model to
LANDIS (forest landscape model, http://www.landis-ii.org/),
which is a forest succession model (Scheller et al. 2008).
Agent-based models can easily take into account spatial
heterogeneity, given that each individual's location can be
monitored (Topping et al. 2005). Such models can represent
hypothetical or simplified spatial configurations (Purucker
et al. 2007; Ascensdo et al. 2013), describe a particular
habitat in detail (Railsback et al. 2009), or be coupled with
sophisticated  landscape = generators  (Langhammer
et al. 2019). Usually spatially explicit ABMs are data de-
manding. However, if data are available, they can represent
multiple spatial characteristics. Agent-based landscape
models (ABLMs), for example, can include details about
many processes, such as spatially dependent animal be-
havior, food availability and accessibility, pesticide ex-
posure, and land management (Topping et al. 2005). When
ABMs are supported by enough data, they can improve risk
assessment by underlining the importance of factors such as
the location of individuals in a population with respect to
chemical exposure gradients (Liu et al. 2013). Nevertheless,
simpler spatially explicit ABMs can also be useful in ERA
(e.g., Purucker et al. 2007).

Model type considerations. Spatial heterogeneity can be
included directly or indirectly within all model types. If data
are rare or absent, unstructured models are a good choice
because they can be used to study different spatial
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dynamics and thus guide future data collection and man-
agement decisions. If a fair amount of data is present and
the modeler understands the complexity of particular
mathematical constructs, structured models can be chosen.
Available software can help model analysis, but this requires
a deep understanding of the assumptions behind the soft-
ware. If spatial data are available, and spatial heterogeneity
and movement are supposed to influence many processes,
ABMs are the best choice. They are mathematically less
demanding and can potentially capture more spatially
dependent processes than the other model types.

External drivers

We define external drivers as any natural or human-
induced factor that directly or indirectly causes a change in
population size or structure and, hence, dynamics. External
drivers can be chemical, physical, or biological, and can
affect an individual in different ways (activity patterns, en-
ergetic balances, physiology, etc.), eventually leading to an
overall population response. They are major determinants of
the structure and function of ecosystems and may drive or-
ganismal adaptations that permit populations to persist
(Barnthouse 2004). External drivers can have a regular pat-
tern (e.g., diurnal or seasonal) and therefore be easily pre-
dicted. Examples of such drivers are temperature, rainfall,
tidal height, or fluctuating interspecific interactions. Other
drivers are less predictable, such as fires, flooding, or other
extreme climatic events. Depending on the timescale of the
study and the ecological and biological processes impacted
by a stressor, external drivers might need to be included.

Relevance for risk assessment. Analysis of population tra-
jectories is central to assessing risk in populations of concern
(Alexander et al. 2009). External drivers can strongly mod-
ulate these trajectories, affecting different stages of an or-
ganism's life cycle and ultimately causing population-level
fluctuations at various time scales (daily cycles or oscillations
over multiple years). Some populations are much more in-
fluenced by external drivers than others. For example, for
fish that overwinter, including seasonal environmental ele-
ments in a population model is critical and may give a very
different outcome than assuming the population reproduces
all year round. The dynamics of amphibian populations may
be influenced by the availability of inundated areas and
have very different dynamics in wet versus dry years. Con-
sequently, exposure to toxicants may have different effects
at both the individual and population levels, depending on
environmental fluctuations (Akcakaya et al. 2004). This may
be especially important when considering impacts of cli-
mate change because chemical stressors, temperature var-
iability, and related extreme climatic events may have
complex and nonintuitive effects on organisms and pop-
ulations. Determining whether and how to include external
drivers in population models requires some basic ecological
knowledge of the system under study (e.g., knowing how
temperature influences different aspects of the life history),
can be explored through the development of different

model scenarios, and can be informed by sensitivity anal-
yses (Schmolke, Kapo et al. 2017; Raimondo et al. 2018).
Finally, external drivers can also have important con-
sequences on the environmental distribution and toxicity of
chemical pollutants (Noyes et al. 2009), as explained in the
section on Integration of exposure and effects.

Incorporation in population models and data needs. Ex-
ternal drivers can be included in unstructured models by
creating sets of equations and imposing rules, such as
“if time equals t,, then a fraction of the population
is eliminated,” or equivalently by expressing them as a set of
equations representing different time periods (Barnthouse
2004). In structured models, it is possible to take into
account environmental drivers such as catastrophes,
environmental variability, or long-time cycles due to inter-
specific interactions (Akgakaya et al. 2004; Carlson and
Simpfendorfer 2015). Accounting for external drivers can be
adjusted ad hoc, by removing periodically a defined per-
centage of the population of particular age classes. Alter-
natively, vital rates of each stage can be multiplied by
coefficients that change periodically, allowing the repre-
sentation of population cycles (Akgakaya et al. 2004). Effects
of random environmental variability can be expressed
by probabilistically choosing among different transition
matrices (Haridas et al. 2013) (see also the section on
Stochasticity below). Matrix population models or models
based on RAMAS®Metapop (Akgakaya 2002) can also rep-
resent changes over time (and sometimes over space) of
properties such as carrying capacity or management strat-
egies (Meulebrouck et al. 2009; Bagavathiannan et al. 2012).
In ABMs, effects of external drivers can be added by mod-
ulating particular organism processes. For example, one can
simulate temperature and/or food fluctuations and calculate
their effects on individual metabolism at each time step
(Accolla et al. 2019). Other environmental drivers can be
hydrological variability and water turbidity (Railsback
et al. 2009; Focks, ter Horst et al. 2014), flooding (Schmolke,
Brain et al. 2017), or flowering periods that affect pollinator
foraging (Becher et al. 2014). Alternatively, states of agents
may vary according to a pattern defined by the day of the
year or season. Data can come from actual environmental
monitoring. Alternatively, one can use theories or
rule-based criteria set by the modeler.

Model type considerations. External drivers can be theo-
retically incorporated in the 3 model types. However, in
unstructured models this means creating a set of ODEs,
instead of a single population model. Structured models
and ABMs are more suitable for representing environmental
drivers. Often, special rules need to be implemented to
represent processes at different time scales. Agent-based
models are particularly flexible in this regard.

Stochasticity

Stochasticity refers to random variations. Observed var-
jations are referred to as “random” if we do not know, or
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cannot know, the mechanisms underlying them. Examples
are daily rainfall or temperature fluctuations, frequency of
flooding or fires, et cetera. Conceptually, stochasticity (i.e.,
random differences) differs from variability (i.e., the extent to
which values in a statistical distribution diverge from the
average value and from each other) and from uncertainty
(i.e., lack of knowledge about a value or process or meas-
urement errors). However, in practice it is often not feasible
to distinguish among these. Stochasticity, variability, and
uncertainty in parameters, external drivers, or other features
of population models are often represented by drawing
values from an assumed statistical distribution.

Relevance for risk assessment. Environmental conditions,
such as good year versus bad year, can affect population
growth rates and generate stochastic variation in population
size. The greater the variability to which a population is
subject, the greater the chances of going extinct
(Tuljapurkar and Orzack 1980). Stochasticity is even more
important after a series of bad years that lead to small pop-
ulations, which have a higher extinction probability. In a similar
fashion, chemical exposure in the environment can be
stochastic due, for example, to random rainfall or runoff
events that drive input into nearby water bodies.
Accounting for stochasticity may be crucial for ERAs given its
potential influence on population dynamics and the
responses of populations to chemicals and other stressors.

Incorporation in population models and data needs. Including
stochasticity in population models for ERA is helpful
for quantifying the range of model output predictions
regardless of model structure. This is usually done by
randomly drawing variables from a probability distribution
and iterating this process in every time step of the model
projection. For example, if a survival probability is 0.3, a
random number between 0 and 1 is generated, and if it is
larger than 0.3, the individual dies. The probability
distributions can reflect the distribution of measured field
data or can be defined a priori from probability theory (e.g.,
lognormal).

Unstructured models containing stochasticity are called
“stochastic differential equations” (SDEs) instead of ODEs.
These equations usually have one or more terms
representing white noise or Poisson processes, but are rel-
atively uncommon in ERA. In structured population models,
stochasticity can be incorporated in the class-specific dem-
ographic parameters (e.g., death, birth, and dispersal) by
sampling different demographic rates from probability dis-
tributions at every time step. In ABMs, stochasticity can be
included in multiple processes beyond mortality and re-
production (e.g., behavior, movement, physiology, inter-
and intraspecific interactions). The number of stochastic
processes accordingly depends on the model complexity,
that is, how many processes are represented that could
include stochasticity.

Even though stochasticity is about random occurrences,
an underlying knowledge of the frequency of such

occurrences is important to generate reliable ERAs. In
practice it may be difficult to clearly distinguish stochasticity
from variability and uncertainty. All of these contribute to
the confidence (or lack thereof) in the resulting risk esti-
mates. In general, the more processes to be represented in
a model, the more opportunity for stochasticity, variability,
and uncertainty to influence risk estimates, thus the higher
the model's data demands. Because ABMs tend to include
more processes than do unstructured or structured models,
data requirements, including those to capture stochasticity,
tend to be greater.

Model type considerations. Stochasticity can be included in
all model types. The inclusion of stochasticity means that
unstructured and structured models cannot be solved ana-
lytically but have to be solved by numerical simulations. The
choice of probability distributions should be guided by data
and knowledge about the stochastic processes irrespective
of model type. Detailed methodology and code for the in-
corporation of stochasticity in models of different structure
are available in Morris and Doak (2002), Grimm and
Railsback (2005), Caswell (2008), and Ellner et al. (2016).
Current software packages such as RAMAS (for structured
models) and VORTEX (Lacy and Pollak 2014) (for ABMs)
greatly facilitate the incorporation of stochasticity.

Life-history traits

The life cycle of an organism refers to the sequence of
events that occurs during the course of its development,
starting with fertilization and ending with death. An organ-
ism's life cycle can be characterized by a series of life-history
traits (including demographic or vital rates as well as qual-
itative features of the life cycle) that represent investment in
survival, growth, and reproduction. They refer to individual-
level traits and include age at first reproduction, time be-
tween reproductive events, lifespan, number and size of
offspring, et cetera.

Relevance for risk assessment. The traits described in the
previous paragraph are important contributors to an or-
ganism's fitness, and for this reason are common test end-
points in ecotoxicology. In ERA, one is rarely concerned with
protecting individual organisms, but rather populations and
groups of populations (i.e., communities, ecosystems)
(Hommen et al. 2010). Therefore, it is necessary to ex-
trapolate the impacts of chemicals on individual life-history
traits to population-level responses. Because the relation-
ships between life-history traits and population dynamics
are typically nonlinear, context dependent, and vary among
species, population models are needed to integrate them
(Schmolke, Thorbek, Chapman et al. 2010; Accolla
et al. 2019; Vaugeois et al. 2020). For example, the same
percentage reduction in adult survival can have very dif-
ferent impacts on population growth rate for a long-lived
species that produces few young compared to a short-lived,
highly fecund species (Stark et al. 2004). Accordingly, toxic
effects observed at the organism level can have very
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different implications for long-term population dynamics
and persistence dependent on the species' life history
(Forbes, Calow et al. 2001; Martin et al. 2014; Forbes,
Railsback et al. 2019). Currently, ERAs generally ignore the
influence of life history and focus predominantly on
individual-level toxicological sensitivity.

Incorporation in population models and data needs. Un-
structured models do not represent the life-history traits of
the organisms, but generally use the intrinsic growth rate of
the population r, which takes into account average birth and
mortality rates. Structured models integrate information on
demographic rates (i.e., stage-specific mean survival,
growth, and reproduction) to estimate population dynamics.
Sometimes, structured models can integrate more complex
physiological aspects or energetic theory (e.g., Klanjscek
et al. 2006; see section on Energetics). Agent-based models
usually incorporate individual survival and reproduction
rates (e.g., calculating the probability of surviving or re-
producing at each time step). These rates can change, de-
pending on the individual life stage (egg, juvenile, adult,
etc.) if information is available. Life-history traits can also be
implemented as resulting from more complex processes
(see section on Energetics) or can be rendered variable
between individuals in the population, for instance, based
on their genetics (Bruggeman et al. 2010).

Because survival, growth, and reproduction are the most
common ecotoxicological endpoints measured, there are
often data available from laboratory toxicity tests from
control and chemically exposed groups that can be used to
estimate the relative change in these traits as a result of
chemical exposure. Challenges can arise in obtaining rele-
vant field data, particularly for inconspicuous life stages or
age classes. For example, although fish are among the most
frequently monitored taxa in the field, often there is no in-
formation on early life-stage survival, and it may be neces-
sary to make some assumptions to fill in the missing data.
This could be done using allometric relationships (e.g., re-
lationship between adult body size and egg number)
(Reiss 1989), life-history theory (Stearns 1992), or closely
related surrogate species (Banks et al. 2010).

Model type considerations. Unstructured  population
models do not explicitly include aspects of an organism's
life history. Therefore, this model type is not appropriate if it
is of interest to incorporate life-history information, which
often aligns with data measured in laboratory toxicity
studies. In contrast, structured models require information
on age- or stage-specific survival probabilities as well as
fertility or reproductive rates at a minimum. Most ABMs also
explicitly incorporate life-history traits and aim to capture
how these vary among individuals.

Behavior

Behavior is an organism's response to physiological and
external biotic and abiotic factors. It is highly adaptable
within genetic limits and therefore represents an important

mechanism for how an organism reacts to environmental
changes, including contaminants (Gerhardt 2007).

Relevance for risk assessment. In the context of ERA, the
role of behavior can be considered for both how it affects an
organism's exposure to a stressor of interest and how it may
be altered by stressor exposure. There are numerous ex-
amples of stressor impacts on the behavior of organisms in
the context of ecotoxicological laboratory studies, which
could lead to altered feeding patterns, movement
speed and patterns (including local movements as well
as migration), predator avoidance, aggression, et cetera,
when considered in an ecological context (Hedgespeth
et al. 2014; Nabe-Nielsen et al. 2014; Chmist et al. 2019). An
example is avoidance behavior, which can be driven by the
stressor and impacts exposure to the stressor (Chaumot
et al. 2003). Because behavior may influence organism ex-
posure and response to a stressor, and stressors may cause
sublethal behavioral responses that impact population dy-
namics, affected behaviors may be crucial to include in a
population model.

Incorporation in population models and data needs. Be-
havior can only indirectly be incorporated in unstructured
models. If one or more parameters depend on behavior, it is
possible to create separate models (equal in structure but
different in parameter values) and then compare the results.
Preston and Snell (2001), for example, use a classical Lotka-
Volterra model to study population growth in a predator—
prey system of rotifers in the presence of a stressor affecting
both reproduction and behavior (swimming speed). In this
model, the prey-capture rate per predator depends on
predator and prey swimming speeds, and can therefore
change depending on the impacts of a stressor. Similarly, in
structured models, behavior can indirectly be incorporated
by the implementation of submodels. Every submodel is
defined by its own stage-dependent properties (survival
rate, fecundity, etc.), which can vary with external factors,
such as stressor concentration and environmental proper-
ties. The links between these submodels depend on be-
havioral dynamics. For example, toxicant-related behavior
can be defined as a proportion of the population in a par-
ticular submodel (or patch) that “decides” to move to an-
other submodel, characterized by a different environment
and toxicant level (Chaumot et al. 2003). Behavior can be
incorporated in ABMs directly, that is, each individual be-
haves as in the real system. With this type of model, it is
possible to take into account behavioral processes, such as
mating, territoriality, nest building, as well as how toxicants
affect those behaviors (Mintram et al. 2018). Agent-based
models can also easily represent different spatial behaviors
and the consequences of movement on exposure if the
model is spatially explicit (Liu et al. 2013).

Behavior can be difficult to measure and quantify in a
standard way across species because it can take extremely
diverse forms even if associated with similar life-history
events (e.g., reproductive behaviors) (Hayward et al. 2012).
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To understand what behavioral considerations may be im-
portant for a population model, it is necessary to understand
the role of those behaviors in the population dynamics of
the species (e.g., the impact of predator avoidance on
mortality rates), the impact of behavior on the exposure of
an individual to the stressor (e.g., avoidance behaviors), and
the consequences of stressor-induced behavioral changes
on population dynamics (e.g., avoidance behaviors leading
to less food consumption or impaired predator avoidance
leading to higher mortality rates). Therefore, it is not pos-
sible to uniquely define the data needed to incorporate
behavior because they are dependent on the particular
behavior represented (different swimming speeds, proba-
bilities to make a choice, mating strategies, stressor avoid-
ance techniques, migration patterns, etc.) and on how
these activities interact with toxicant concentration and
its spatiotemporal variability (see section on Spatial
heterogeneity). Usually, specific laboratory experiments or
field monitoring have to be performed to have a good
parameterization of behavioral dynamics.

Model type considerations. Estimates of how an altered
behavior may impact relevant endpoints (mortality or fe-
cundity rates, predation rates, etc.) can be incorporated in
any model type. However, unstructured and structured
models offer limited possibilities to incorporate this feature.
Agent-based models are particularly well suited because
they are designed to allow the simulation of individual
behavior.

Energetics

Energetics is the branch of comparative physiology that
quantifies the metabolic cost of various aspects of an
organism's biological activity (Tomlinson et al. 2014).
Usually this includes the energy required to fuel basal
metabolic rate (BMR), standard metabolic rate (SMR),
thermoregulation, growth, locomotion, reproduction, and
any other set of activities that requires energy intake or
consumption (Tomlinson et al. 2014). In the last decades,
there has been a growing utilization of the concept of
assimilated energy, to determine both organism growth
and ecosystem productivity (Liao et al. 2006). The main
reason for the growing appeal of energetic approaches is
that they rely on the first principle of thermodynamics,
that is, the conservation of matter and energy (Beyers
et al. 1999). Moreover, metabolism is one of the great
unifying processes in biology, making connections
between all levels of organization, from molecules to
ecosystems (Brown et al. 2004).

Relevance for risk assessment. Organisms live in a fluctu-
ating environment, often adjusting their energy use to
stressful conditions such as resource limitation. If an addi-
tional pollutant-related stressor is present, the organism
energy allocation may be impacted, likely causing a reduc-
tion in growth, reproduction, or maintenance (Beyers
et al. 1999). From an ERA perspective, understanding

the energy budget of an organism can help to identify
which metabolic processes are affected by a toxicant
(Kooijman 2010; Sibly et al. 2013). Exposure to toxicants can
be represented by a change in energetic parameters, such
as a reduction in the assimilation of food or an increase in
maintenance costs (Alvarez et al. 2006). The advantage of
this approach is that the mode of action of the stressor can
be better understood by analyzing which parameter change
results in the best representation of data. For example, a
reduction in reproduction can be caused by a stressor af-
fecting different metabolic pathways. Depending on the
mode of action, very different outcomes may result at
the population level, even if the effect on individual
reproduction is similar (Martin et al. 2014).

Incorporation in population models and data needs. The
energy budget of an organism, or of a group of organisms,
is always represented as a balance between energy intake
and expenditure. Energetics can be considered as a sub-
individual module that is integrated more or less easily in
different model types. The equations describing the dif-
ferent processes of metabolism (food consumption, growth,
metabolic costs, and waste products) can be empirically
parameterized (Hanson et al. 1997; Pachzelt et al. 2013;
Schmitt et al. 2013) or mechanistically calculated. Examples
of empirically parameterized models include the Wisconsin
fish model (Hanson et al. 1997). Energetic models based on
mechanistic theories (Sibly et al. 2013) include the dynamic
energy budget (DEB) model (Kooijman 2010), the metabolic
theory of ecology (MTE) (Brown et al. 2004), and the model
for ontogenetic growth (West et al. 2001). Parametrization of
any energetic model, whether empirically or mechanistically
based, requires a large amount of information, for example,
foraging, assimilation and growth efficiencies, allocation
rules, physiological needs, and morphological relationships.
(Emlen 1989).

In unstructured models, energetics is represented by dif-
ferential equations describing the change in biomass pro-
duction of a population. Similarly, within structured models
each class can be characterized by its own energetics and
develops according to metabolic processes. Energy uptake
and expenditure can be modeled as a function of age-
specific or stage-specific body mass or age. Energy there-
fore drives the development of each class (Miller et al. 2011;
Pachzelt et al. 2013). Other studies link more complicated
energy budget models, such as DEB theory, to structured
model parameters (Klanjscek et al. 2006; Klok et al. 2007).
To do so, one must mathematically link the energetics
model to stage-related survival and fecundity, solving
complicated equations (see Klanjscek et al. 2006). As for the
other 2 model types, equation terms of energetically based
ABMs can be mechanistically explained (e.g., MTE or DEB)
or defined operationally through measured (or measurable)
changes in metabolic rates, most commonly through
changes in measured respiration rate under different ex-
perimental conditions (Nisbet et al. 2012). Examples can be
found in Jager et al. (2013) and Schmolke et al. (2019).

Integr Environ Assess Manag 2020:1-20

DOI: 10.1002/ieam.4362

© 2020 SETAC



12

Integr Environ Assess Manag 00, 2020—C Accolla et al.

Model type considerations. Energetics can be incorporated
in unstructured, structured, and agent-based models. They
require a large amount of data to be adequately para-
meterized in any of the 3 model types, and the complexity
of their mathematical formulation is mainly linked to the
chosen energetic theory. Mechanistic theories usually result
in more complicated equations, which have to be adapted
to the specific model at hand. However, these theories
provide a common, codified framework to compare
model results across different species and different levels of
biological organization.

Integration of exposure and effects

The traditional risk assessment paradigm consists of
problem formulation, exposure assessment, effects assess-
ment, and risk characterization (Suter 2007). Exposure and
effects assessments are typically conducted in parallel and
then brought together in the risk characterization phase. At
its simplest, this is in the form of a risk or hazard quotient in
which a measured or predicted exposure concentration is
divided by an effects concentration threshold (below which
minimal effects are expected). In some cases, distributions
of exposure and effects concentrations are compared with
the area of overlap providing a probabilistic risk estimate.

Relevance for risk assessment. The entire purpose of ERA is
to estimate risk by relating the concentrations of chemicals
to which organisms are likely to be exposed with those
concentrations that cause adverse effects. However, be-
cause the exposure and effects assessments are conducted
independently, there is sometimes a mismatch that makes
their integration challenging. For example, in aquatic sys-
tems, exposure to a pesticide may occur as a series of ir-
regular peaks in time as a result of runoff events. This is then
compared with the effects measured in a laboratory toxicity
test performed under constant exposure concentrations and
for a different duration than the relevant exposure duration
in the field. This mismatch has to be addressed by ERA,
especially with increasing evidence of climate-change-
driven alterations of environmental parameters, which affect
the environmental distribution and biological effects of
toxicants (Noyes et al. 2009). Population models can in-
tegrate exposure and effects on relevant spatial and tem-
poral scales.

Incorporation in population models and data needs. The
link between exposure and effects is often implemented as a
concentration-response relationship relating a particular
toxicant concentration to an endpoint of interest (e.g., mor-
tality rate). However, for temporally varying exposure sce-
narios, toxicokinetic—toxicodynamic (TKTD) models are the
most appropriate tool for relating external exposure to in-
ternal uptake and organism-level effects. “Toxicokinetic”
deals with the time course of the toxicant concentration in the
organism, which changes because of absorption, distribution,
elimination, and biotransformation. “Toxicodynamic” deals
with the processes that affect the organism at the toxicant

target sites. Toxicodynamic models can be energetically
based, describing the metabolic pathway that is affected by
the toxicant (Ashauer et al. 2011). The General Unified
Threshold model of Survival (GUTS) (Jager and Ashauer 2018)
has been developed to capture lethal effects, and DEB
models integrating sublethal toxicant effects (DEB-Tox
models, see Jager and Zimmer 2012) have been used as
TD models. Incorporating spatially varying exposure sce-
narios into population models usually requires using a model
that is spatially explicit (see section on Spatial heterogeneity
above). Either monitoring data or fate model predictions are
needed to characterize the exposure variability, and on the
effects side, measurements of relevant effects at several ex-
posure concentrations and/or durations will generally be
needed.

Some unstructured models can describe exposure and
effects through calculating an average mortality rate due to
the exposure (Baveco et al. 2014) or through a TKTD model
(Schmitt et al. 2013; see section on Energetics above).
Systems of ODEs called “nonautonomous ODEs” can also
integrate variability in effects as a consequence of different
exposure scenarios or toxicant dynamics. This involves the
implementation of rules that affect, for example, demo-
graphic variables in response to pesticide application (Banks
et al. 2008). This approach is already more efficient than
using static dose—response assessments of toxicity, even if
other model types can better incorporate effects over mul-
tiple generations (Banks et al. 2008). Structured models can
integrate the effects that may occur during the various
stages of the life cycle of an exposed organism by adjusting
the stage- or age-specific demographic variables. Struc-
tured metapopulation models can take into account the
spatial heterogeneity of exposure, but even without adding
spatial complexity, these models allow characterization of
the impact of a toxicant at the population level and over a
longer temporal scale than can be tested in typical toxicity
tests (e.g., Ducrot et al. 2007). Agent-based models are in-
creasingly used to integrate exposure and effects. Because
ABMs can represent spatial and temporal variations without
using complex mathematical objects, they can easily rep-
resent different spatial exposure and temporal scenarios.
Such models have been used to test different exposure-
effect scenarios and analyze the consequent changes in
population dynamics and recovery patterns (e.g., Galic
et al. 2012; Focks, Luttik et al. 2014). Moreover, TKTD
models are often used with ABMs (Ashauer et al. 2011).

Model type considerations. Although integration of ex-
posure and effects is possible in any type of population
model, ABMs are best able to incorporate the effects of
temporally varying exposures, and spatially explicit ABMs
and structured metapopulation models are well designed to
incorporate effects of spatially varying exposures. The in-
tegration can be very simple (e.g., consider scenarios with
different numbers and locations of clean versus con-
taminated patches in a metapopulation model) or very
complex (e.g., overlay a GIS map of an actual landscape
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with realistic habitat features and actual field contamination
data with a detailed simulation of individuals moving around
the landscape and being exposed in space and time
[Dalkvist et al. 2009]).

ANALYSIS OF PREVIOUSLY PUBLISHED
POPULATION MODELS

We revisited an existing database of population models
(Forbes et al. 2016) to investigate how some of the key
features are associated with the different model types.
Forbes et al. (2016) analyzed the frequency of incorporation
of some features in population models from 403 peer-
reviewed English-language papers published during 2004
to 2014. Reviewed publications described population
models that have been applied to assess risks of pesticides
to listed species or used in other contexts that could provide
useful approaches and/or data for listed species risk as-
sessments. In their review, the authors categorized models
in terms of structure, taxonomic coverage, purpose, inputs
and outputs, and whether the models included density de-
pendence, stochasticity, risk estimates, or were spatially
explicit. For the purpose of our study, we revisited
the structure category, which had 4 attributes (matrix,
individual-based, unstructured, multiple and other), to
match our 3 model types. Matrix was included as structured
and individual-based as agent based. The multiple and
other and the unstructured categories were reevaluated and
included as appropriate. Moreover, we increased the
number of entries to 450 because some studies included
multiple model types. Our analyses extend the work of
Forbes et al. (2016) by analyzing how some of the model
features they assessed are associated with different model
types.

Based on the information available in the database, we
investigated the association between model type and the
following 6 key features: density dependence, spatial het-
erogeneity, stochasticity, life-history traits, behavior, and
energetics. We did not consider external drivers or the in-
tegration of exposure and effects because these features
were not present in the original database. We built con-
tingency tables for each feature and performed chi-square
tests of independence to determine if there was a significant
association between model type and each key feature. We
then performed a Cramer's V test to determine the strength
of the association. Finally, we performed a random forest
analysis to understand which key features are the most im-
portant to distinguish the different model types. The
modified database and details of the statistical analyses we
performed are available in the Supplemental Data.

Model types and key features

First, it is important to note that the database shows what
key features have been included in models of the 3 types,
not which key features they can or should include. Our
analyses show that almost all key features have been in-
cluded in all model types (life-history traits are not included
in unstructured models), but that some features occur more

frequently in some model types than in others (Figure 2). As
indicated by the chi-square tests, no features are in-
dependent of model type. For each feature, this means that
the frequencies of inclusion in each model type are different
than what would be expected from the overall frequency of
this feature for all model types pooled. Density dependence
has more often been included in ABMs (80% of ABMs in the
database), whereas it has been included in only about 50%
of the unstructured and structured models. Agent-based
models are more often spatially explicit (more than 60%)
than structured models (less than 45%) and unstructured
models (less than 20%). Stochasticity has been included in
the majority of models for all model types. About 90% of
ABMs included stochasticity, whereas about 70% and 60%
of structured and unstructured models included it, re-
spectively. Agent-based models and structured models in-
cluded life history in about 95% of cases. Behavior was
included in about 10% of unstructured models, about 20%
of structured models, and about 65% of ABMs. Finally, en-
ergetics was more often included in ABMs and unstructured
models (10%-20%) than in structured models (less than 5%).

The strength of the association (Cramer's V test) indicates
which of the key features are more characteristic of certain
model types, that is, how different the frequency of inclusion
of a feature is among different model types. The Cramer's V
test does not specify which model type is associated with
the analyzed key feature. The stronger associations were
observed for behavior (Cramer's V test of 0.409) and life
history representation (0.919). This means that these 2 fea-
tures are most distinctive among model types. Density de-
pendence (0.248), spatial heterogeneity (0.242), energetics
(0.211), and stochasticity (0.191) are all less strongly asso-
ciated with any particular model type.

We additionally analyzed the key features differentiating
between model types using a random forest analysis. This
method can be used to determine which variables (here, key
model features) are the most important to consider in order
to predict observations (here, model type). This analysis
confirmed the previous results and underlined that life
history and behavior are the 2 most distinctive features
between model types. These key features are strongly
associated with 1 model type (more represented in this
type compared to the others), in our case the structured
model type for life history and the agent-based type for
behavior.

Figure 3 presents the proportion of models of each type,
including a different number of the 6 key features we con-
sidered for our analyses (from O to 6). The range of number
of features is higher for ABMs (from 2 to 6), whereas the
ranges for structured and unstructured models are lower
(from 1 to 5 and from 0 to 4, respectively). Moreover, most
of the ABMs include 5 features, which is more than struc-
tured (2 to 3) and unstructured (1) models. A straightforward
but misleading conclusion would be that unstructured
models are less complex than structured models, and that
structured models are less complex than ABMs. However,
the number of features is not a proxy of model complexity,
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because some features can be more easily integrated in
some model types than others. For instance, spatial heter-
ogeneity and behavior can be more easily integrated in an
ABM compared to an unstructured model. Consequently,
an ABM that integrates these 2 features is not necessarily
more complex than an unstructured model that integrates
only one of these features. Therefore, model complexity is
not only a matter of how many key features are included, but
rather related with how those features are included (i.e., to
the mathematical formulation of the features and to their
interactions with the other modeled processes).

DISCUSSION

In the last 2 decades, there have been multiple initiatives
to increase the use of mechanistic models in ERA
(Thorbek et al. 2010; Forbes, Schmolke et al. 2019). Chipps
and Wahl (2008) recommended focusing on model evalua-
tion, fostering interactions between model developers and
model users, and reducing uncertainty in modeling appli-
cations for guiding management. Model documentation
and evaluation are now widely recognized as important
components of any modeling excercise (Schmolke, Thorbek,
DeAngelis et al. 2010; Grimm et al. 2014, 2020), and com-
munication between regulators and modelers is strongly
encouraged (Forbes, Schmolke et al. 2019).

Many efforts have been made recently to promote the
actual application of models as common practice in ERA,
explicitly considering the perspective of risk assessors and
managers. Raimondo et al. (2018) proposed a framework for
developing and applying population models in regulatory
decision making, expressly focusing on the regulators' per-
spective. Their work aims at defining the needs of models in
accordance with the objectives of the risk assessment.
Schmolke, Kapo et al. (2017) developed a systematic ap-
proach to transparently develop population models. The
authors built a detailed decision guide that takes into ac-
count the available knowledge and data, and that is in-
tended to help model development. Although the work of
Schmolke et al. (2017) work explicitly targets modelers, its
result is a communicable conceptual model that summarizes
the decisions taken by the modelers. The conceptual model
provides an excellent starting point for consultation with risk
assessors and regulators prior to model implementation, to
involve all stakeholder groups and ensure buy-in.

Our work builds on these earlier efforts and studies to
assist risk assessors and managers in understanding the
main types of population models, their advantages and
limitations in association with specific ERA questions.
Choosing the key features to represent in a model is part of
the model development process and establishes the degree
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of complexity of the model. Decisions about model com-
plexity depend on the model objectives, data availability,
previous knowledge of the ecological system, and available
resources (time, funding, etc.). The decision process related
to considering key features, and deciding how they will be
included in the model, leads to the creation of the con-
ceptual model. The final conceptual model clearly states
which features have been taken into account and should be
discussed and understood by all involved parties before
moving to the next step, that is, model implementation. The
model type is decided in this implementation step. As we
demonstrate in the present review, the model type defines
the underlying formalism of the model that can be adapted
and extended to include representation of the key features.
Our work shows that the boundaries between the model
types are sometimes blurred, given that most key features
can be included in unstructured, structured, and agent-
based models. However, some features directly inform the
choice of model type. Density dependence, stochasticity,
energetics and, to a certain extent, spatial heterogeneity are
easily included in the 3 model types. Structured models and
ABMs are more suitable for representing external drivers
and life-history traits. Finally, ABMs are best able to in-
corporate behavior, effects of varying exposures, and spatial
heterogeneity, if the latter influences many processes.

As our overview shows, ABMs are the most flexible model
type in terms of incorporating all key features in, if needed
or possible, great detail. This comes as no surprise because
unstructured and structured models aggregate information,
which can limit how far the key features are taken into ac-
count. Still, the degree to which a key feature needs to be
included, for example, stochasticity or space, depends on
the specific question and context. Furthermore, to include 1
or more of the key features in greater detail, ABMs need to
be considerably more complex than the other
2 model types, which implies larger effort in terms of model
building, parameterization, analysis, and application
(Grimm 1999). In practice, ABMs often would be “nice to
have,” but constraints in data, time, or personnel can make it
impossible to develop them in the time available. On the
other hand, once an ABM, including all key features, in
particular behavior and bioenergetics, has been developed
and tested, it can cover a wide range of questions and be
adapted to new cases and systems (Stillman et al. 2015).

So far, the 3 model types discussed in the present
paper have been considered as exclusive alternatives, with
clearly definable potentials and, in particular, limitations, as
also shown by our analysis of previously published
population models. Our work, coupled with systematic
guidance on model development and implementation,
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prevents arbitrary model type selection, which can lead to
ill-conceived statements concerning the relative merits
of different modeling approaches for ERA (Bartell
et al. 2003).

Insights from multimodeling

The formalization and implementation of the conceptual
model will depend on the model type chosen. As we show
in our review, the formalizations of key features differ be-
tween model types. These formalizations come with ad-
vantages and disadvantages that may influence the model
outputs (Meli et al. 2014). If the uncertainty about the model
formalization is a concern for a particular ERA question,
understanding and credibility of model results can be en-
hanced by a multimodeling approach. Using a combined
approach can add robustness to the conclusions drawn as
well as highlight areas of uncertainty.

Examples from the literature show how using a multi-
modeling approach can provide more insights to understand
natural systems and model capacities (DeAngelis et al. 1993;
Pfister and Stevens 2003; Topping et al. 2005; Pagel
et al. 2008; Meli et al. 2014). These authors compare ABMs
with unstructured or structured models, showing that results
are similar under many circumstances. However, under cer-
tain conditions, some factors can highly influence model
outputs. For example, when using an ABM to model a pop-
ulation with positive temporal correlations in growth (i.e., in-
dividuals that grow faster than the mean on 1 day have a
tendency to grow faster the following days), model outputs
can diverge markedly from an unstructured model (DeAngelis
et al. 1993). Similarly, population-level effects for different
spatial distributions of a toxicant can be well represented by
both ABMs and structured models in a homogeneous soil
contamination scenario. However, predictions are not always
consistent when contamination is heterogeneous, in partic-
ular if avoidance behavior and different food levels are in-
cluded in the ABM (Meli et al. 2014). Agent-based models
are therefore more suitable for risk assessment whenever
fine-scale resolution, multiple stressors, or particular behav-
iors clearly influence population dynamics (Meli et al. 2014).

These results stress the crucial importance of under-
standing which processes have to be taken into account
when developing a population model for ERA. If results of
different models are not comparable, this points to different
assumptions taken during model conceptualization or dif-
ferent formalizations of processes in model implementation.
The corresponding assumptions and processes can be
identified as important in the context of the ERA (Topping
et al. 2005). Therefore, we advise the use of a multimodeling
approach in some circumstances, because it can increase
confidence in model outputs to inform regulatory decisions.
For example, developing 2 models can increase trust in
models for which full validation in the field is impractical.
However, we acknowledge that this approach is sometimes
infeasible because of budget or time limitations. This high-
lights once more how important it is that modelers, regu-
lators, and risk assessors understand and communicate

about the whole modeling process, including the choice of
the key features to represent, the model type to implement,
and its assumptions.

CONCLUSIONS

In the present review, we have provided an overview of
the key features represented in population models relevant
for ERA and a guide to understanding different model types,
to clarify which insights can be gained by each of them. We
have also analyzed how the key features have been used in
published population models implemented as unstructured,
structured (matrix), and agent- (individual-) based
models. The review will help promote understanding of
what the different model types are, how key features can
be included in these model types, and how they drive
the choice of model type. Our work joins the previous
literature aimed at encouraging communication among
regulators, risk assessors, and modelers, and at ensuring
the use of the best available science. It is meant to facilitate
the efficient selection of population models for use in
ERA, increase confidence in model conclusions, reduce
subjectivity in model assessment, and enhance efforts in
model evaluation.
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